يعرض 1 - 20 نتائج من 16,445 نتيجة بحث عن '(((( algorithm three function ) OR ( algorithm a function ))) OR ( algorithm ai function ))', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Algorithm results based on FE simulated likelihood functions. حسب Nicolas Herzig (9230425)

    منشور في 2020
    "…<p>(A) Nodule depth estimation by the algorithm with the likelihood functions obtained by FEM simulation. …"
  8. 8
  9. 9

    Fig 4 - حسب Xutao Liu (13006965)

    منشور في 2023
    الموضوعات:
  10. 10

    Pseudo-code of DMDDPG algorithm. حسب Guohua Cao (697580)

    منشور في 2025
    "…Next, a reward function is designed by integrating the decoupled multi-agent deterministic deep deterministic policy gradient (DMDDPG) algorithm. …"
  11. 11
  12. 12
  13. 13

    Functional enrichment analysis. حسب Junjie Su (368807)

    منشور في 2025
    الموضوعات:
  14. 14

    Improved A* algorithm flowchart. حسب Peiying Li (797714)

    منشور في 2024
    الموضوعات:
  15. 15
  16. 16

    Genetic Algorithm for Automated Parameterization of Network Hamiltonian Models of Amyloid Fibril Formation حسب Gianmarc Grazioli (6752297)

    منشور في 2024
    "…The models generated by the AI produced fibril fractions that surpass previously published fibril fractions in 3 of 5 cases, including the most naturally abundant amyloid fibril topology, the <i>1,2 2-ribbon</i>, which features a steric zipper. …"
  17. 17

    datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf حسب Santiago Hernández-Orozco (5070209)

    منشور في 2021
    "…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"
  18. 18

    datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip حسب Santiago Hernández-Orozco (5070209)

    منشور في 2021
    "…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"
  19. 19

    datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf حسب Santiago Hernández-Orozco (5070209)

    منشور في 2021
    "…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"
  20. 20

    datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip حسب Santiago Hernández-Orozco (5070209)

    منشور في 2021
    "…In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…"