Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
using function » using functional (Expand Search), sine function (Expand Search), waning function (Expand Search)
algorithm its » algorithm i (Expand Search), algorithm etc (Expand Search), algorithm iqa (Expand Search)
its function » i function (Expand Search), loss function (Expand Search), cost function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
using function » using functional (Expand Search), sine function (Expand Search), waning function (Expand Search)
algorithm its » algorithm i (Expand Search), algorithm etc (Expand Search), algorithm iqa (Expand Search)
its function » i function (Expand Search), loss function (Expand Search), cost function (Expand Search)
-
41
-
42
-
43
Practical rules for summing the series of the Tweedie probability density function with high-precision arithmetic
Published 2019“…With these practical rules, simple summation algorithms provide sufficiently robust results for the calculation of the density function and its definite integrals. …”
-
44
-
45
Simulation settings of rMAPPO algorithm.
Published 2025“…This paper first analyzes the H-beam processing flow and appropriately simplifies it, develops a reinforcement learning environment for multi-agent scheduling, and applies the rMAPPO algorithm to make scheduling decisions. The effectiveness of the proposed method is then verified on both the physical work cell for riveting and welding and its digital twin platform, and it is compared with other baseline multi-agent reinforcement learning methods (MAPPO, MADDPG, and MASAC). …”
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
Boxplot of fitness in various algorithms.
Published 2023“…The convergence of SGWO was analyzed by mathematical theory, and the optimization ability of SGWO and the prediction performance of SGWO-Elman were examined using comparative experiments. The results show: (1) the global convergence probability of SGWO was 1, and its process was a finite homogeneous Markov chain with an absorption state; (2) SGWO not only has better optimization performance when solving complex functions of different dimensions, but also when applied to Elman for parameter optimization, SGWO can significantly optimize the network structure and SGWO-Elman has accurate prediction performance.…”
-
59
-
60
Pseudo-code of MWOA algorithm.
Published 2024“…Moreover, the Wilcoxon rank sum test is used to verify the effectiveness of the proposed algorithm. …”