Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
where function » sphere function (Expand Search), gene function (Expand Search), wave function (Expand Search)
algorithm from » algorithm flow (Expand Search)
from function » from functional (Expand Search), fc function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
where function » sphere function (Expand Search), gene function (Expand Search), wave function (Expand Search)
algorithm from » algorithm flow (Expand Search)
from function » from functional (Expand Search), fc function (Expand Search)
-
21
Search-based testing (Genetic Algorithm) - Chapter 11 of the book "Software Testing Automation"
Published 2022“…</p> <p><br></p> <p>3. Algorithm</p> <p>Below is the main body of the test data generator program:</p> <p> </p> <p>the main body of a Python program to generate test data for Python functions.…”
-
22
Wav2DDK: An automated DDK estimation algorithm (Kadambi et al., 2023)
Published 2023“…The clinical utility of the algorithm was demonstrated on a corpus of 7,919 assessments collected longitudinally from 26 healthy controls and 82 ALS speakers. …”
-
23
-
24
-
25
Comparison of scores obtained by our interpenetration and scoring algorithm (ISA) and ROSETTA for a subset of structures.
Published 2023“…ROSETTA’s scoring functions with default weights support our claim that many structures exhibit lower scores, as the most structures can be found for lower scores where a high bin count can be observed (A). …”
-
26
-
27
-
28
-
29
Performance of the three algorithms.
Published 2024“…Then, the bilevel programming model is transformed from the deterministic case to the stochastic case, where the upper-level problem determines the restoration sequence to minimize CVaR-R and the lower-level problem is a traffic assignment problem. …”
-
30
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
31
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
32
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
33
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
34
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
35
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
36
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
37
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
38
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
39
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
-
40
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”