Showing 21 - 40 results of 9,428 for search '(((( algorithm where function ) OR ( algorithm from function ))) OR ( algorithm python function ))', query time: 0.67s Refine Results
  1. 21

    Search-based testing (Genetic Algorithm) - Chapter 11 of the book "Software Testing Automation" by Saeed Parsa (13893726)

    Published 2022
    “…</p> <p><br></p> <p>3. Algorithm</p> <p>Below is the main body of the test data generator program:</p> <p>  </p> <p>the main body of a Python program to generate test data for Python functions.…”
  2. 22

    Wav2DDK: An automated DDK estimation algorithm (Kadambi et al., 2023) by Prad Kadambi (16680635)

    Published 2023
    “…The clinical utility of the algorithm was demonstrated on a corpus of 7,919 assessments collected longitudinally from 26 healthy controls and 82 ALS speakers. …”
  3. 23
  4. 24
  5. 25

    Comparison of scores obtained by our interpenetration and scoring algorithm (ISA) and ROSETTA for a subset of structures. by Kevin Sawade (16726527)

    Published 2023
    “…ROSETTA’s scoring functions with default weights support our claim that many structures exhibit lower scores, as the most structures can be found for lower scores where a high bin count can be observed (A). …”
  6. 26
  7. 27
  8. 28
  9. 29

    Performance of the three algorithms. by Juanjuan Lin (2096830)

    Published 2024
    “…Then, the bilevel programming model is transformed from the deterministic case to the stochastic case, where the upper-level problem determines the restoration sequence to minimize CVaR-R and the lower-level problem is a traffic assignment problem. …”
  10. 30

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  11. 31

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  12. 32

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  13. 33

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  14. 34

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  15. 35

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  16. 36

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  17. 37

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  18. 38

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  19. 39

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  20. 40

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”