يعرض 181 - 200 نتائج من 1,146 نتيجة بحث عن '(((( algorithm where function ) OR ( algorithm npc function ))) OR ( algorithm python function ))', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 181

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  2. 182

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  3. 183

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  4. 184

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  5. 185

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  6. 186

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  7. 187

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  8. 188

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  9. 189

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  10. 190

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  11. 191

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  12. 192
  13. 193
  14. 194

    EAT-Rice: A predictive model for flanking gene expression of T-DNA insertion activation-tagged rice mutants by machine learning approaches حسب Chi-Chou Liao (6680852)

    منشور في 2019
    "…<div><p>T-DNA activation-tagging technology is widely used to study rice gene functions. When T-DNA inserts into genome, the flanking gene expression may be altered using CaMV 35S enhancer, but the affected genes still need to be validated by biological experiment. …"
  15. 195
  16. 196

    Optimization outcome for the Rosenbrock function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  17. 197

    Optimization outcome for the Rastrigin function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  18. 198

    2D Rastrigin function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  19. 199

    2D Levy function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  20. 200

    2D Rosenbrock function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"