Showing 161 - 180 results of 1,142 for search '(((( algorithm where functional ) OR ( algorithm cl function ))) OR ( algorithm python function ))', query time: 1.17s Refine Results
  1. 161

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  2. 162

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  3. 163

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  4. 164

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  5. 165

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  6. 166

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  7. 167

    Levy function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  8. 168

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  9. 169

    Rastrigin function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  10. 170

    Rosenbrock function losses for . by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  11. 171
  12. 172
  13. 173

    Wav2DDK: An automated DDK estimation algorithm (Kadambi et al., 2023) by Prad Kadambi (16680635)

    Published 2023
    “…The clinical utility of the algorithm was demonstrated on a corpus of 7,919 assessments collected longitudinally from 26 healthy controls and 82 ALS speakers. …”
  14. 174
  15. 175

    Optimization outcome for the Rosenbrock function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  16. 176

    Optimization outcome for the Rastrigin function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  17. 177

    2D Rastrigin function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  18. 178

    2D Levy function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  19. 179

    2D Rosenbrock function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”
  20. 180

    Optimization outcome for the Levy function. by Shikun Chen (14625352)

    Published 2025
    “…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…”