بدائل البحث:
algorithms among » algorithms using (توسيع البحث), algorithm using (توسيع البحث)
among functional » using functional (توسيع البحث), meg functional (توسيع البحث), cog functional (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm 1 » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث), algorithm 8217 (توسيع البحث)
1 function » _ function (توسيع البحث), a function (توسيع البحث)
algorithms among » algorithms using (توسيع البحث), algorithm using (توسيع البحث)
among functional » using functional (توسيع البحث), meg functional (توسيع البحث), cog functional (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm 1 » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث), algorithm 8217 (توسيع البحث)
1 function » _ function (توسيع البحث), a function (توسيع البحث)
-
1
-
2
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
منشور في 2025"…For a RDKit molecule, it provides (i) a PNG binary string with an image of the molecule with color-highlighted functional groups; (ii) a list of sets of atom indices (idx), each set corresponding to a functional group; (iii) a list of pseudo-SMILES canonicalized strings for the full functional groups; and (iv) a list of RDKit labeled mol objects, one for each full functional group. …"
-
3
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
منشور في 2025"…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
-
4
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
-
5
-
6
FAR-1: A Fast Integer Reduction Algorithm Compared to Collatz and Half-Collatz
منشور في 2025الموضوعات: -
7
-
8
-
9
-
10
Efficient algorithms to discover alterations with complementary functional association in cancer
منشور في 2019"…We provide analytic evidence of the effectiveness of UNCOVER in finding high-quality solutions and show experimentally that UNCOVER finds sets of alterations significantly associated with functional targets in a variety of scenarios. In particular, we show that our algorithms find sets which are better than the ones obtained by the state-of-the-art method, even when sets are evaluated using the statistical score employed by the latter. …"
-
11
-
12
An expectation-maximization algorithm for finding noninvadable stationary states.
منشور في 2020"…<i>(b)</i> Metabolic byproducts move the relevant unperturbed state from <b>R</b><sup>0</sup> (gray ‘x’) to (black ‘x’), which is itself a function of the current environmental conditions. …"
-
13
-
14
-
15
-
16
-
17
Experimental results of basic unimodal benchmark functions (<i>f</i>1−<i>f</i>7).
منشور في 2021الموضوعات: -
18
Experimental results of basic multi-modal benchmark functions (<i>f</i>8−<i>f</i>13).
منشور في 2021الموضوعات: -
19
Experimental results of CEC 2013 composition benchmark functions (<i>f</i>44−<i>f</i>51).
منشور في 2021الموضوعات: -
20
Convergence process on CEC 2013 multi-modal benchmark functions (<i>f</i>29−<i>f</i>36).
منشور في 2021الموضوعات: