بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithms risk » algorithms less (توسيع البحث), algorithms real (توسيع البحث), algorithms across (توسيع البحث)
algorithm could » algorithm models (توسيع البحث)
python function » protein function (توسيع البحث)
could function » cell function (توسيع البحث), cells function (توسيع البحث)
risk function » link function (توسيع البحث), loss function (توسيع البحث), cost function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithms risk » algorithms less (توسيع البحث), algorithms real (توسيع البحث), algorithms across (توسيع البحث)
algorithm could » algorithm models (توسيع البحث)
python function » protein function (توسيع البحث)
could function » cell function (توسيع البحث), cells function (توسيع البحث)
risk function » link function (توسيع البحث), loss function (توسيع البحث), cost function (توسيع البحث)
-
4421
Image 4_Transcriptomic profiling of diabetic retinopathy: insights into RPL11 and bisphenol A.jpeg
منشور في 2025"…These findings highlight the need for additional research to explore the possibility of minimizing BPA contamination as a potential DR risk mitigation strategy, rooted in hypothesis-generating insights.…"
-
4422
Image 1_Transcriptomic profiling of diabetic retinopathy: insights into RPL11 and bisphenol A.jpeg
منشور في 2025"…These findings highlight the need for additional research to explore the possibility of minimizing BPA contamination as a potential DR risk mitigation strategy, rooted in hypothesis-generating insights.…"
-
4423
Image 2_Transcriptomic profiling of diabetic retinopathy: insights into RPL11 and bisphenol A.jpeg
منشور في 2025"…These findings highlight the need for additional research to explore the possibility of minimizing BPA contamination as a potential DR risk mitigation strategy, rooted in hypothesis-generating insights.…"
-
4424
Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4425
Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4426
Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4427
Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4428
Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4429
Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4430
Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
منشور في 2025"…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
-
4431
<b>dGenhancer v2</b>: A software tool for designing oligonucleotides that can trigger gene-specific Enhancement of Protein Translation.
منشور في 2024"…<br> An excel-based calculator - dGenhancer can be used to search for putative 5’UTR cis-acting elements, which functional activity could be determined by Gibbs energy-dependent secondary structure formation. …"
-
4432
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
-
4433
Table 1_Viroscope™: a universal solution for plant virus and viroid diagnostics using HTS and cloud-based analysis.docx
منشور في 2025"…Notably, 25% of plants harbored emergent viruses with functional evidence, highlighting potential risks undetected by traditional procedures. …"
-
4434
Table 3_Viroscope™: a universal solution for plant virus and viroid diagnostics using HTS and cloud-based analysis.docx
منشور في 2025"…Notably, 25% of plants harbored emergent viruses with functional evidence, highlighting potential risks undetected by traditional procedures. …"
-
4435
Table 2_Viroscope™: a universal solution for plant virus and viroid diagnostics using HTS and cloud-based analysis.xlsx
منشور في 2025"…Notably, 25% of plants harbored emergent viruses with functional evidence, highlighting potential risks undetected by traditional procedures. …"
-
4436
DataSheet1_Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.PDF
منشور في 2021"…Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. …"
-
4437
Video1_Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.MP4
منشور في 2021"…Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. …"
-
4438
Video2_Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.MP4
منشور في 2021"…Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. …"