Showing 1 - 20 results of 30 for search '(((( algorithms used function ) OR ( algorithm rate function ))) OR ( algorithm python function ))~', query time: 1.10s Refine Results
  1. 1

    Reward function related parameters. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  2. 2
  3. 3

    S1 File - by Yuh-Chin T. Huang (17867207)

    Published 2024
    “…In this study, we developed a computerized algorithm using the python package (pdfplumber) and validated against clinicians’ interpretation. …”
  4. 4

    S1 Dataset - by Yuh-Chin T. Huang (17867207)

    Published 2024
    “…In this study, we developed a computerized algorithm using the python package (pdfplumber) and validated against clinicians’ interpretation. …”
  5. 5

    BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data by Jean-Christophe Lachance (6619307)

    Published 2019
    “…Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a <b>B</b>iomass <b>O</b>bjective <b>F</b>unction from experimental <b>dat</b>a. …”
  6. 6

    Main parameters of braking system. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  7. 7

    EMB and SBW system structure. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  8. 8

    Raw data. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  9. 9

    Code program. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  10. 10

    The HIL simulation data flowchart. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  11. 11

    Steering system model. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  12. 12

    Hyperparameter Configurations in PPO Training. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  13. 13

    Main parameters of steering system. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  14. 14

    Co-simulation architecture. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  15. 15

    Overall framework diagram of the study. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  16. 16

    Braking system model. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  17. 17

    Vehicle parameters. by Honglei Pang (22693724)

    Published 2025
    “…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …”
  18. 18

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  19. 19
  20. 20