بدائل البحث:
algorithms using » algorithm using (توسيع البحث), algorithm used (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
using function » using functional (توسيع البحث), sine function (توسيع البحث), waning function (توسيع البحث)
algorithm l » algorithm cl (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
l function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
algorithms using » algorithm using (توسيع البحث), algorithm used (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
using function » using functional (توسيع البحث), sine function (توسيع البحث), waning function (توسيع البحث)
algorithm l » algorithm cl (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
l function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
141
-
142
-
143
-
144
-
145
Eight commonly used benchmark functions.
منشور في 2023"…The proposed algorithm was evaluated on eight standard benchmark functions, CEC2019 benchmark functions, four engineering design problems, and a PID parameter optimization problem. …"
-
146
-
147
Standard benchmark functions used for the experimentation of EOSA and other similar optimization algorithms.
منشور في 2023"…<p>Standard benchmark functions used for the experimentation of EOSA and other similar optimization algorithms.…"
-
148
Revisiting the “satisfaction of spatial restraints” approach of MODELLER for protein homology modeling
منشور في 2019"…Secondly, we have inquired into how the incorporation of statistical potential terms (such as the DOPE potential) in the MODELLER’s objective function impacts positively 3D modeling quality by providing a small but consistent improvement in metrics such as GDT-HA and lDDT and a large increase in stereochemical quality. …"
-
149
Wilcoxon’s test results for EBJADE algorithms and other state-of-the-art CEA-ES algorithms using CEC2014 functions.
منشور في 2024"…<p>Wilcoxon’s test results for EBJADE algorithms and other state-of-the-art CEA-ES algorithms using CEC2014 functions.…"
-
150
Wilcoxon’s test results for EBJADE algorithms and other algorithms using CEC2014 functions for D = 30, 50 and 100.
منشور في 2024"…<p>Wilcoxon’s test results for EBJADE algorithms and other algorithms using CEC2014 functions for D = 30, 50 and 100.…"
-
151
-
152
Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses
منشور في 2022"…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
-
153
Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses
منشور في 2022"…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
-
154
Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses
منشور في 2022"…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …"
-
155
Swarm intelligence algorithms for width and length on influence games
منشور في 2021"…<br><br><div>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--excludenodes EXCLUDENODES]<br><br>Calculates the best Influence Spread set on a Weighted Symmetric Graph using PSO<br></div><div><br></div><div><div>positional arguments:</div><div> file</div><div><br></div><div>optional arguments:</div><div> -h, --help: show this help message and exit</div><div> -a: threat file input contents as an Adjacency Matrix</div><div> -r: reverse order of nodes, from (a,b,w) a -> b will be b -> a</div><div> -d D: line separator to use while parsing</div><div> -t T: number of times to execute</div><div> -i I: number of metaheuristic iterations per execution</div><div> -q Q: fixed quota, use 0 = floor(n/2)+1</div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2,s2_neg,v2,v4</div><div> --sym: consider graph as symmetric instead of directed</div><div> --folder FOLDER: output folder</div><div> --seed SEED: use custom seed for metaheuristic calcs</div><div> --sum SUM: adds a value to all node labels</div><div> --mh MH: metaheuristic to use - list of implemented metaheuristics: {1: 'Swarm', 2: 'Swarm2', 3: 'Swarm_W', 4:</div><div> 'Swarm_L'}</div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</div><div> --notags: do not use first row as node tags - tags will be calculated</div><div> --prune: nodes with outdegree = 0 and indegree > 0, and with outdegree = 1 and neighbor's outdegree > 0 will be excluded</div><div> --excludenodes EXCLUDENODES: nodes to skip, comma separated</div></div>…"
-
156
-
157
Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta
منشور في 2021"…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"
-
158
Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta
منشور في 2021"…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"
-
159
Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta
منشور في 2021"…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"
-
160
Development and Evaluation of GlycanDock: A Protein–Glycoligand Docking Refinement Algorithm in Rosetta
منشور في 2021"…We performed a benchmark docking assessment using a set of 109 experimentally determined protein–glycoligand complexes as well as 62 unbound protein structures. …"