Showing 1 - 20 results of 1,563 for search '(((( c large decrease ) OR ( via laser decrease ))) OR ( b marked decrease ))', query time: 0.67s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  7. 7

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  8. 8

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  9. 9

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  10. 10

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    <b>Effect of Marked Weight Loss on Adipose Tissue Biology in People with Obesity and Type 2 Diabetes</b> by Dmitri Samovski (305400)

    Published 2025
    “…</p><p dir="ltr"><b>Results: </b>Weight loss: <a href="" target="_blank">i) </a><a href="" target="_blank">decreased adipose tissue </a>expression of genes related to extracellular matrix remodeling; ii) decreased adipose tissue expression of SERPINE 1 which encodes plasminogen activator inhibitor-1 (PAI-1); iii) did not decrease adipose tissue immune cell content or expression of genes involved in inflammation; iv) decreased adipose tissue ceramide content; v) decreased plasma <a href="" target="_blank">PAI-1 </a>and leptin concentrations and increased plasma high-molecular weight (HMW) adiponectin; and vi) decreased plasma small extracellular vesicle (sEV) concentration and the sEV content of microRNAs proposed to inhibit insulin action, and completely reversed the inhibitory effect of plasma sEVs on insulin signaling in myotubes.…”
  19. 19
  20. 20

    ROC analysis to mark selectivity results in mostly mixed-selective units. by Thomas S. Wierda (22404198)

    Published 2025
    “…The large number of mixed selective units also results in a significant decrease in accuracy when these neurons are targeted as compared to <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013559#pcbi.1013559.g006" target="_blank">Fig 6c</a> where there was no significant effect visible after targeting mixed selective units, likely because there were less mixed selective units present. …”