Showing 1 - 20 results of 16,457 for search '(((( c larger decrease ) OR ( ((ai large) OR (via large)) decrease ))) OR ( c large increases ))', query time: 0.69s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Norm ISWSVR: A Data Integration and Normalization Approach for Large-Scale Metabolomics by Xian Ding (421647)

    Published 2022
    “…More importantly, Norm ISWSVR also allows a low frequency of QCs, which could significantly decrease the burden of a large-scale experiment. Correspondingly, Norm ISWSVR favorably improves the data quality of large-scale metabolomics data.…”
  6. 6
  7. 7

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…(C) Mutualism also promotes an increase in network connectance when introduced into assembled communities, while stopping mutualistic interactions from entering an assembled system slowly decreases it. …”
  8. 8
  9. 9
  10. 10

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  11. 11

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  12. 12

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  13. 13

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  14. 14

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  15. 15

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20