Showing 1 - 20 results of 3,343 for search '(((( c largest decrease ) OR ( a marked decrease ))) OR ( via ((step decrease) OR (we decrease)) ))', query time: 0.72s Refine Results
  1. 1
  2. 2

    Modeling the Shape and Stability of Co Nanoparticles as a Function of Size and Support Interactions through DFT Calculations and Monte Carlo Simulations by Enrico Sireci (12127349)

    Published 2025
    “…We report a marked increase in step and kink sites at the expense of terraces with increasing particle size, which we linked to the experimentally observed increase in turnover frequency (TOF). …”
  3. 3
  4. 4
  5. 5
  6. 6

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  7. 7

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  8. 8

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  9. 9

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20