Showing 1 - 20 results of 2,664 for search '(((( cloud ((a decrease) OR (_ decrease)) ) OR ( _ large decrease ))) OR ( shows mae decrease ))', query time: 0.37s Refine Results
  1. 1

    HDECO: A method for Decreasing energy and cost by using virtual machine migration by considering hybrid parameters by Arash GhorbanniaDelavar (22563696)

    Published 2025
    “…<h2>Summary</h2><p dir="ltr">This research introduces <b>HDECO</b> (Hybrid Decreasing Energy and Cost Optimization) — a method designed to reduce both energy consumption and execution cost in cloud datacenters through intelligent virtual machine migration. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    The MAE value of the model under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  7. 7
  8. 8
  9. 9
  10. 10

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  11. 11

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  12. 12

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  13. 13

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  14. 14

    Analysis of raw data prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  15. 15

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  16. 16

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  17. 17

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  18. 18

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  19. 19

    STL Linear Combination Forecast Graph. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
  20. 20

    LOSS curves for BWO-BiLSTM model training. by Xiangjuan Liu (618000)

    Published 2025
    “…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”