Search alternatives:
large decrease » larger decrease (Expand Search), marked decrease (Expand Search), large increases (Expand Search)
mae decrease » mean decrease (Expand Search), marked decrease (Expand Search), rate decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search), mean decrease (Expand Search)
_ decrease » _ decreased (Expand Search), _ decreasing (Expand Search)
shows mae » shows a (Expand Search), show me (Expand Search)
large decrease » larger decrease (Expand Search), marked decrease (Expand Search), large increases (Expand Search)
mae decrease » mean decrease (Expand Search), marked decrease (Expand Search), rate decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search), mean decrease (Expand Search)
_ decrease » _ decreased (Expand Search), _ decreasing (Expand Search)
shows mae » shows a (Expand Search), show me (Expand Search)
-
1
HDECO: A method for Decreasing energy and cost by using virtual machine migration by considering hybrid parameters
Published 2025“…<h2>Summary</h2><p dir="ltr">This research introduces <b>HDECO</b> (Hybrid Decreasing Energy and Cost Optimization) — a method designed to reduce both energy consumption and execution cost in cloud datacenters through intelligent virtual machine migration. …”
-
2
-
3
-
4
-
5
-
6
The MAE value of the model under raw data.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
7
-
8
-
9
-
10
Testing set error.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
11
Internal structure of an LSTM cell.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
12
Prediction effect of each model after STL.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
13
The kernel density plot for data of each feature.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
14
Analysis of raw data prediction results.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
15
Flowchart of the STL.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
16
SARIMA predicts season components.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
17
BWO-BiLSTM model prediction results.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
18
Bi-LSTM architecture diagram.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
19
STL Linear Combination Forecast Graph.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”
-
20
LOSS curves for BWO-BiLSTM model training.
Published 2025“…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …”