Search alternatives:
large decrease » larger decrease (Expand Search), marked decrease (Expand Search), large increases (Expand Search)
nm decrease » nn decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search), mean decrease (Expand Search)
_ decrease » _ decreased (Expand Search), _ decreasing (Expand Search)
a large » _ large (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search), 10 km (Expand Search)
large decrease » larger decrease (Expand Search), marked decrease (Expand Search), large increases (Expand Search)
nm decrease » nn decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search), mean decrease (Expand Search)
_ decrease » _ decreased (Expand Search), _ decreasing (Expand Search)
a large » _ large (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search), 10 km (Expand Search)
-
1
HDECO: A method for Decreasing energy and cost by using virtual machine migration by considering hybrid parameters
Published 2025“…<h2>Summary</h2><p dir="ltr">This research introduces <b>HDECO</b> (Hybrid Decreasing Energy and Cost Optimization) — a method designed to reduce both energy consumption and execution cost in cloud datacenters through intelligent virtual machine migration. …”
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
Photooxidation and Cleavage of Ethynylated 9,10-Dimethoxyanthracenes with Acid-Labile Ether Bonds
Published 2025“…Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO–LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA). …”
-
12
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
13
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
14
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
15
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
16
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
17
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
18
-
19
-
20