Showing 1 - 20 results of 4,508 for search '(((( cloud map decrease ) OR ( a ((teer decrease) OR (mean decrease)) ))) OR ( _ patent decrease ))', query time: 0.61s Refine Results
  1. 1
  2. 2
  3. 3

    Y-27632 collaborated with BA to attenuate the increase in the integrity and decrease in the permeability of epithelial barrier injury induced by LPS in Caco2 monolayers. by Luqiong Liu (11537092)

    Published 2024
    “…<p>(<b>A)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on days 1–22. …”
  4. 4
  5. 5
  6. 6

    Point cloud fusion instance effect. by Hongliang Zou (20707270)

    Published 2025
    “…<div><p>The study proposes a multi-sensor localization and real-timeble mapping method based on the fusion of 3D LiDAR point clouds and visual-inertial data, which addresses the issue of decreased localization accuracy and mapping in complex environments that affect the autonomous navigation of robot dogs. …”
  7. 7
  8. 8
  9. 9

    Apoptosis inhibitor prevented the decrease of IIL ESP-induced TJs expression and alleviated barrier disruption of Caco-2 monolayer. by Qi Qi Lu (17721401)

    Published 2025
    “…<p><b>A:</b> Apoptosis inhibitor Z-VAD-FMK pretreatment increased the IIL ESP-decreased TEER. …”
  10. 10

    The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER. by Charlotte J. van Ginkel (20790466)

    Published 2025
    “…In (B) and (C) each point represents a mean ± standard deviation. (B) Hyaluronidase treatment (n = 8) gradually increased TEER, this significantly differed from the untreated group (n = 8) and the PS treated group (n = 8) (p < 0,001). …”
  11. 11
  12. 12

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  13. 13

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  14. 14

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  15. 15

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  16. 16

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  17. 17

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  18. 18
  19. 19
  20. 20