Showing 261 - 280 results of 610 for search '(((( complement based algorithm ) OR ( element data algorithm ))) OR ( level coding algorithm ))', query time: 0.44s Refine Results
  1. 261

    LSTM model’s equations. by Songsong Wang (8088293)

    Published 2025
    “…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…”
  2. 262

    Parameter’s interpretation. by Songsong Wang (8088293)

    Published 2025
    “…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…”
  3. 263

    The models’ training parameters. by Songsong Wang (8088293)

    Published 2025
    “…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…”
  4. 264

    Model’s measure methods. by Songsong Wang (8088293)

    Published 2025
    “…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…”
  5. 265

    Association point and relationship. by Songsong Wang (8088293)

    Published 2025
    “…The findings indicate that the LSTM model, when integrated with the watershed-internal KG and LLM, can effectively incorporate critical elements influencing water level changes, the accuracy of the LLM-KG-LSTM model is enhanced by 3% compared to the standard LSTM model, and the LSTM series outperforms both RNN and GRU models, Our method will guide future research from the perspective of focusing on forecasting algorithms to the perspective of focusing on the relationship between multi-dimensional disaster data and algorithm parallelism.…”
  6. 266

    Periodic Table’s Properties Using Unsupervised Chemometric Methods: Undergraduate Analytical Chemistry Laboratory Exercise by Adrian Gabriel Pereira de Quental (20382423)

    Published 2024
    “…The unsupervised algorithms were able to find “natural” clustering from the periodic table using the data structure without any prior knowledge of the class assignment of the samples. …”
  7. 267

    Periodic Table’s Properties Using Unsupervised Chemometric Methods: Undergraduate Analytical Chemistry Laboratory Exercise by Adrian Gabriel Pereira de Quental (20382423)

    Published 2024
    “…The unsupervised algorithms were able to find “natural” clustering from the periodic table using the data structure without any prior knowledge of the class assignment of the samples. …”
  8. 268
  9. 269
  10. 270
  11. 271
  12. 272
  13. 273

    EvoFuzzy by Hasini Nakulugamuwa-Gamage (17344420)

    Published 2024
    “…The algorithm evolves a population of networks using fuzzy trigonometric differential evolution, with gene expression predictions based on confidence levels applied through a fuzzy logic-based predictor.…”
  14. 274

    TreeMap 2016: A tree-level model of the forests of the conterminous United States circa 2016 by Karin L. Riley (19657882)

    Published 2025
    “…The raster map of plot identifiers can be linked to the FIA databases available through the FIA DataMart (https://doi.org/10.2737/RDS-2001-FIADB) or to the text and SQL files included in this data publication to produce tree-level maps or to map other plot attributes. The accompanying database files included in this publication also contain attributes regarding the FIA plot CN (or control number, a unique identifier for each time a plot is measured), the subplot number, the tree record number, and for each tree: the status (live or dead), species, diameter, height, actual height (where broken), crown ratio, number of trees per acre, and a code for cause of death where applicable. …”
  15. 275

    Ricker seismic profile. by Zhenjing Yao (22189970)

    Published 2025
    “…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
  16. 276

    Noise reduction on testing sets from STEAD. by Zhenjing Yao (22189970)

    Published 2025
    “…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
  17. 277

    SNR comparison of real-field seismic profile. by Zhenjing Yao (22189970)

    Published 2025
    “…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
  18. 278

    The flowchart of GWO-VMD method. by Zhenjing Yao (22189970)

    Published 2025
    “…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
  19. 279

    The 147th single trace. by Zhenjing Yao (22189970)

    Published 2025
    “…<div><p>Seismic noise separation and suppression is an important topic in seismic signal processing to improve the quality of seismic data recorded at monitoring stations. We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
  20. 280