بدائل البحث:
complement based » complement past (توسيع البحث), complement cascade (توسيع البحث), complement system (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
complement based » complement past (توسيع البحث), complement cascade (توسيع البحث), complement system (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
441
-
442
-
443
S1 Graphical abstract -
منشور في 2025"…The software uses a shape-detection algorithm to single out and track the movement of pillars’ tips for the most common shapes of EHT platforms. …"
-
444
The architecture of the SE-multi-input CNN model.
منشور في 2025"…While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variability, data imbalance, and feature representation limitations. …"
-
445
Confusion matrix for the Multi-input CNN model.
منشور في 2025"…While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variability, data imbalance, and feature representation limitations. …"
-
446
Confusion matrices for single-input CNN models.
منشور في 2025"…While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variability, data imbalance, and feature representation limitations. …"
-
447
Confusion matrix for the Multi-input CNN model.
منشور في 2025"…While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variability, data imbalance, and feature representation limitations. …"
-
448
-
449
Quantitative results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
450
Counting results on DRPD dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
451
Quantitative results on RFRB dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
452
Main module structure.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
453
Counting results on MTDC-UAV dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
454
Quantitative results on DRPD dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
455
Architecture of MAR-YOLOv9.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
456
Quantitative results on MTDC-UAV dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
457
Counting results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
458
Example images from four plant datasets.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
459
Counting results on RFRB dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
460
Detection visualization results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"