بدائل البحث:
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
complement ipca » complement 5a (توسيع البحث), complement c3 (توسيع البحث), complement c5 (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
elements modbo » element model (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
complement ipca » complement 5a (توسيع البحث), complement c3 (توسيع البحث), complement c5 (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
elements modbo » element model (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
201
Counting results on MTDC-UAV dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
202
Quantitative results on DRPD dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
203
Architecture of MAR-YOLOv9.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
204
Quantitative results on MTDC-UAV dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
205
Counting results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
206
Example images from four plant datasets.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
207
Counting results on RFRB dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
208
Detection visualization results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
209
-
210
Video 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.mp4
منشور في 2025"…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …"
-
211
Data Sheet 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.pdf
منشور في 2025"…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …"
-
212
supporting data for PHD thesis entitled " Arousal Regulation and Neurofeedback Treatment for ADHD Children"
منشور في 2025"…Analyses use standardized mean differences (Hedges g) under random-effects models, stratified by comparator type (medicine, active, sham, passive) and, where applicable, contrasted across protocol families (customised algorithm, SCP, SMR, TBR).</p><p dir="ltr">The supporting dataset contains the <b>raw arm-level descriptive statistics</b> required to compute effect sizes: per study, outcome, and timepoint it lists group means, standard deviations, and sample sizes for neurofeedback and control arms, along with rater, comparator category, protocol type, and outcome direction coding (so higher values consistently reflect the intended construct). …"
-
213
Echo Peak
منشور في 2025"…</p><p dir="ltr">For classification, the algorithm iteratively processes the audio in overlapping time windows. …"
-
214
Identify different types of urban renewal implementations at streetscape scale
منشور في 2025"…Existing research primarily focuses on detecting pixel-level or object-level changes in urban physical space, often neglecting the semantic complexity inherent in urban renewal. …"
-
215
Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma
منشور في 2025"…<p>The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. …"
-
216
AI Influence in the Educational Environment
منشور في 2025"…The CSV file contains Likert-scale and categorical responses, with a separate README describing each variable and coding scheme.</p><p dir="ltr"><b>Potential reuse</b><br>Researchers can replicate or extend technology-acceptance models in emerging-economy contexts, compare student versus professional cohorts, or conduct secondary analyses on AI self-efficacy and algorithmic trust.…"
-
217
<b>R</b><b>esidual</b> <b>GCB-Net</b>: Residual Graph Convolutional Broad Network on Emotion Recognition
منشور في 2025"…It can accurately reflect the emotional changes of the human body by applying graphical-based algorithms or models. EEG signals are nonlinear signals. …"
-
218
ImproBR Replication Package
منشور في 2025"…<br><br>**Import Errors:**<br>Make sure you're in the replication package directory:<br>```bash<br>cd ImproBR-Replication<br>python improbr_pipeline.py --help<br>```<br><br>## Research Results & Evaluation Data<br>### RQ1: Bug Report Improvement Evaluation (139 reports)<br>**Manual Evaluation Results:**<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv</u>) - First evaluator assessments<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv</u>) - Second evaluator assessments <br>- [`RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv</u>) - Consolidated evaluation results<br><br>**Inter-Rater Agreement (Cohen's Kappa):**<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png</u>) - Steps to Reproduce κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png</u>) - Observed Behavior κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png</u>) - Expected Behavior κ scores<br><br>**Algorithm Results:**<br>- [`RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/</u>) - ImproBR improved reports<br>- [`RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/</u>) - ChatBR baseline results<br>- [`RQ1-RQ2/RQ1/algorithm_results/bee_analysis/`](<u>RQ1-RQ2/RQ1/algorithm_results/bee_analysis/</u>) - BEE tool structural analysis<br><br>### RQ2: Comparative Analysis vs ChatBR (37 pairs)<br>**Similarity Score Results:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv</u>) - TF-IDF similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv</u>) - Word2Vec similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json</u>) - Complete TF-IDF comparison with scores for each comparison unit (full debugging)<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json</u>) - Complete Word2Vec comparison with scores for each comparison unit (full debugging)<br><br>**Algorithm Outputs:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/</u>) - ImproBR enhanced reports<br>- [`RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/</u>) - ChatBR baseline outputs<br>- [`RQ1-RQ2/RQ2/dataset/ground_truth/`](<u>RQ1-RQ2/RQ2/dataset/ground_truth/</u>) - High-quality reference reports<br>## Important Notes<br><br>1. …"
-
219
Figure 8 from Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States
منشور في 2024"…Each tumor sample was color-coded by its <i>ERG</i> fusion status inferred by the <i>ERG</i> gene expression level. …"
-
220
<b>A virtual tracer experiment to assess the temporal origin of root water uptake, evaporation, and </b><b>drainage</b>
منشور في 2024"…</p><p dir="ltr"><a href="" target="_blank">Two open-source Matlab scripts are available in the zip-files. The PT.m Matlab code determines the drainage transit time based on the particle tracking algorithm, while the VTE.m Matlab code determines the drainage and RWU transit times and relative rainfall contributions to actual evaporation, actual transpiration, and drainage using isotope transport simulations in HYDRUS-1D</a>. …"