Showing 1 - 20 results of 9,089 for search '(((( data component algorithm ) OR ( a learning algorithm ))) OR ( element network algorithm ))', query time: 0.51s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Characteristics of training algorithms. by Tuan Anh Nguyen (121944)

    Published 2025
    “…This article presents the design of a hybrid self-learning algorithm to address the above challenges. …”
  11. 11
  12. 12

    Table 6_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  13. 13

    Table 7_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  14. 14

    Table 3_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  15. 15

    Table 2_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  16. 16

    Table 1_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  17. 17

    Table 4_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  18. 18

    Table 5_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx by Anjan Kumar Pradhan (9386369)

    Published 2025
    “…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. …”
  19. 19
  20. 20