بدائل البحث:
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
sample processing » image processing (توسيع البحث), time processing (توسيع البحث), pre processing (توسيع البحث)
network algorithm » new algorithm (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
element network » alignment network (توسيع البحث)
processing algorithm » modeling algorithm (توسيع البحث), routing algorithm (توسيع البحث), tracking algorithm (توسيع البحث)
sample processing » image processing (توسيع البحث), time processing (توسيع البحث), pre processing (توسيع البحث)
network algorithm » new algorithm (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
element network » alignment network (توسيع البحث)
-
21
Genetic algorithm iteration data chart.
منشور في 2024"…The results show: (1) Random oversampling, ADASYN, SMOTE, and SMOTEENN were used for data balance processing, among which SMOTEENN showed better efficiency and effect in dealing with data imbalance. (2) The GA-XGBoost model optimized the hyperparameters of the XGBoost model through a genetic algorithm to improve the model’s predictive accuracy. …"
-
22
-
23
-
24
-
25
FastICA algorithm and feature point selection.
منشور في 2025"…The sub-block selection algorithm sorts and filters sub-blocks based on the average pixel difference, reconstructing the input data to ensure accurate separation of melanin and hemoglobin. …"
-
26
-
27
-
28
-
29
-
30
Improved random forest algorithm.
منشور في 2025"…Subsequently, the feature factors corresponding to the model with the highest accuracy were selected as the optimal feature subsets and used in the model construction as input data. Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …"
-
31
K-means++ clustering algorithm.
منشور في 2025"…Subsequently, the feature factors corresponding to the model with the highest accuracy were selected as the optimal feature subsets and used in the model construction as input data. Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …"
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
Ultrafast Hydrogen Detection System Using Vertical Thermal Conduction Structure and Neural Network Prediction Algorithm Based on Sensor Response Process
منشور في 2025"…Meanwhile, the model significantly enhanced the detection speed by enabling hydrogen concentration prediction using only the initial 40 data points (sampling frequency of 100 Hz) from the sensor response before the sensor completes the entire response process. …"
-
40
Ultrafast Hydrogen Detection System Using Vertical Thermal Conduction Structure and Neural Network Prediction Algorithm Based on Sensor Response Process
منشور في 2025"…Meanwhile, the model significantly enhanced the detection speed by enabling hydrogen concentration prediction using only the initial 40 data points (sampling frequency of 100 Hz) from the sensor response before the sensor completes the entire response process. …"