يعرض 121 - 140 نتائج من 12,066 نتيجة بحث عن '(((( develop based algorithm ) OR ( element data algorithm ))) OR ( data using algorithm ))*', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 121

    Parameters of DKZ32. حسب Yunhu Huang (21402795)

    منشور في 2025
    الموضوعات:
  2. 122
  3. 123
  4. 124
  5. 125

    Image 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  6. 126

    Table 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  7. 127

    Table 6_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  8. 128

    Table 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  9. 129

    Table 4_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  10. 130

    Image 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  11. 131

    Table 8_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  12. 132

    Table 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  13. 133

    Image 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.tiff حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  14. 134

    Table 5_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  15. 135

    Table 7_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx حسب Benedictor Alexander Nguchu (9984371)

    منشور في 2025
    "…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
  16. 136

    Table 1_Predicting liver metastasis in pancreatic neuroendocrine tumors with an interpretable machine learning algorithm: a SEER-based study.docx حسب Jinzhe Bi (21225545)

    منشور في 2025
    "…Furthermore, the SHAP framework revealed that surgery, N-stage, and T-stage are the primary decision factors influencing the machine learning model’s predictions. Finally, based on the GBM algorithm, we developed an accessible web-based calculator to predict the risk of liver metastasis in PaNETs.…"
  17. 137
  18. 138

    Base learner parameters. حسب Jingru Dong (14076094)

    منشور في 2025
    الموضوعات:
  19. 139

    Scatter diagram of different principal elements. حسب Jizhong Wang (7441697)

    منشور في 2025
    "…<div><p>A fault diagnosis method for oil immersed transformers based on principal component analysis and SSA LightGBM is proposed to address the problem of low diagnostic accuracy caused by the complexity of current oil immersed transformer faults. Firstly, data on dissolved gases in oil is collected, and a 17 dimensional fault feature matrix is constructed using the uncoded ratio method. …"
  20. 140