بدائل البحث:
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
develop based » developed based (توسيع البحث), develop masld (توسيع البحث), development based (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
develop based » developed based (توسيع البحث), develop masld (توسيع البحث), development based (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
-
121
-
122
-
123
-
124
-
125
Image 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
126
Table 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
127
Table 6_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
128
Table 2_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
129
Table 4_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
130
Image 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.pdf
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
131
Table 8_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
132
Table 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
133
Image 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.tiff
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
134
Table 5_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
135
Table 7_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
136
Table 1_Predicting liver metastasis in pancreatic neuroendocrine tumors with an interpretable machine learning algorithm: a SEER-based study.docx
منشور في 2025"…Furthermore, the SHAP framework revealed that surgery, N-stage, and T-stage are the primary decision factors influencing the machine learning model’s predictions. Finally, based on the GBM algorithm, we developed an accessible web-based calculator to predict the risk of liver metastasis in PaNETs.…"
-
137
-
138
-
139
Scatter diagram of different principal elements.
منشور في 2025"…<div><p>A fault diagnosis method for oil immersed transformers based on principal component analysis and SSA LightGBM is proposed to address the problem of low diagnostic accuracy caused by the complexity of current oil immersed transformer faults. Firstly, data on dissolved gases in oil is collected, and a 17 dimensional fault feature matrix is constructed using the uncoded ratio method. …"
-
140