بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
best algorithm » forest algorithm (توسيع البحث), based algorithm (توسيع البحث), new algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
data learning » meta learning (توسيع البحث), deep learning (توسيع البحث), a learning (توسيع البحث)
develop best » develop post (توسيع البحث), develop next (توسيع البحث), develop robust (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
best algorithm » forest algorithm (توسيع البحث), based algorithm (توسيع البحث), new algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
data learning » meta learning (توسيع البحث), deep learning (توسيع البحث), a learning (توسيع البحث)
develop best » develop post (توسيع البحث), develop next (توسيع البحث), develop robust (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
Ranking of ML algorithms.
منشور في 2025"…For this purpose, well-known Machine Learning (ML) algorithms such as Random Forest (RF), Adaptive Boosting (AB), and Gradient Boosting (GB) were utilized. …"
-
7
-
8
-
9
The overview of the ML algorithms’ flowchart.
منشور في 2025"…For this purpose, well-known Machine Learning (ML) algorithms such as Random Forest (RF), Adaptive Boosting (AB), and Gradient Boosting (GB) were utilized. …"
-
10
Overview of machine learning framework to predict early childhood development in East Africa.
منشور في 2025الموضوعات: -
11
-
12
Variables tested in the ML algorithms.
منشور في 2024"…</p><p>Conclusions</p><p>Among the machine learning algorithms evaluated, Random Forest showed the best generalization ability, both internally and externally. …"
-
13
-
14
Development of the CO<sub>2</sub> Adsorption Model on Porous Adsorbent Materials Using Machine Learning Algorithms
منشور في 2024"…Different machine learning (ML) algorithms, such as NN, MLP-GWO, XGBoost, RF, DT, and SVM, have been applied to display the CO<sub>2</sub> adsorption performance as a function of characteristics and adsorption isotherm parameters. …"
-
15
-
16
-
17
-
18
Algorithmic experimental parameter design.
منشور في 2024"…The results of numerical simulations and sea trial experimental data indicate that the use of subarrays comprising 5 and 3 array elements, respectively, is sufficient to effectively estimate 12 source angles. …"
-
19
DMTD algorithm.
منشور في 2025"…Overall, the EITO<sub>P</sub> algorithm has the best performance.</p></div>…"
-
20
Data_Sheet_1_Development of prognostic models for advanced multiple hepatocellular carcinoma based on Cox regression, deep learning and machine learning algorithms.CSV
منشور في 2024"…</p>Methods<p>Eligible patients with HCC were obtained from the Surveillance, Epidemiology, and End Results (SEER) database, and then prognostic models were built using Cox regression, machine learning (ML), and deep learning (DL) algorithms. The model’s performance was evaluated using C-index, receiver operating characteristic curve, Brier score and decision curve analysis, respectively, and the best model was interpreted using SHapley additive explanations (SHAP) interpretability technique.…"