بدائل البحث:
modelling algorithm » modeling algorithm (توسيع البحث), processing algorithm (توسيع البحث)
best algorithm » forest algorithm (توسيع البحث), based algorithm (توسيع البحث), new algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
develop best » develop post (توسيع البحث), develop next (توسيع البحث), develop robust (توسيع البحث)
modelling algorithm » modeling algorithm (توسيع البحث), processing algorithm (توسيع البحث)
best algorithm » forest algorithm (توسيع البحث), based algorithm (توسيع البحث), new algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
develop best » develop post (توسيع البحث), develop next (توسيع البحث), develop robust (توسيع البحث)
-
1
-
2
-
3
Comparison of the EODA algorithm with existing algorithms in terms of recall.
منشور في 2025الموضوعات: -
4
Comparison of the EODA algorithm with existing algorithms in terms of precision.
منشور في 2025الموضوعات: -
5
Comparison of the EODA algorithm with existing algorithms in terms of F1-Score.
منشور في 2025الموضوعات: -
6
-
7
The relevant code in the manuscript can be found in the supporting information data file.
منشور في 2025الموضوعات: -
8
-
9
-
10
Ranking of ML algorithms.
منشور في 2025"…The RF algorithm performed best with the lowest mean absolute percentage error (MAPE, 0.084%), mean absolute error (MAE, 0.035), root mean square error (RMSE, 0.063), and mean squared error (MSE, 0.004) values in the test dataset. …"
-
11
-
12
-
13
-
14
-
15
The overview of the ML algorithms’ flowchart.
منشور في 2025"…The RF algorithm performed best with the lowest mean absolute percentage error (MAPE, 0.084%), mean absolute error (MAE, 0.035), root mean square error (RMSE, 0.063), and mean squared error (MSE, 0.004) values in the test dataset. …"
-
16
-
17
-
18
-
19
-
20
Variables tested in the ML algorithms.
منشور في 2024"…Shapley values for local interpretability were more informative than LIME ones, which is in line with our exploratory analysis and global interpretation of the final model. Machine learning algorithms with good generalization and accompanied by interpretability analyses are recommended for assessments of individual risks of cardiovascular diseases and development of personalized preventive actions.…"