بدائل البحث:
developing based » development based (توسيع البحث), developed based (توسيع البحث), developing rapid (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
developing based » development based (توسيع البحث), developed based (توسيع البحث), developing rapid (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
element data » settlement data (توسيع البحث), relevant data (توسيع البحث), movement data (توسيع البحث)
-
121
Table 3_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
122
Image 1_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.tiff
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
123
Table 5_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
124
Table 7_Identifying network state-based Parkinson’s disease subtypes using clustering and support vector machine models.xlsx
منشور في 2025"…</p>Methods<p>Here, we employ K-means and hierarchical clustering algorithms on data from the Parkinson’s Progression Markers Initiative (PPMI) to identify network-specific patterns that describe PD subtypes using the optimal number of brain features. …"
-
125
-
126
Table 1_Predicting liver metastasis in pancreatic neuroendocrine tumors with an interpretable machine learning algorithm: a SEER-based study.docx
منشور في 2025"…Furthermore, the SHAP framework revealed that surgery, N-stage, and T-stage are the primary decision factors influencing the machine learning model’s predictions. Finally, based on the GBM algorithm, we developed an accessible web-based calculator to predict the risk of liver metastasis in PaNETs.…"
-
127
-
128
Scatter diagram of different principal elements.
منشور في 2025"…<div><p>A fault diagnosis method for oil immersed transformers based on principal component analysis and SSA LightGBM is proposed to address the problem of low diagnostic accuracy caused by the complexity of current oil immersed transformer faults. Firstly, data on dissolved gases in oil is collected, and a 17 dimensional fault feature matrix is constructed using the uncoded ratio method. …"
-
129
Flowchart of the artificial bee colony algorithm.
منشور في 2025"…The findings demonstrate the effectiveness of combining an intelligent optimization algorithm with the LSSVM model. This approach is reliable for predicting the porosity in complex formations and performing reservoir evaluations in oil and gas exploration and development.…"
-
130
DataSheet1_Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis.docx
منشور في 2024"…Studies that developed ML models for predicting specific ADEs or ADEs associated with particular drugs were included using EHR data.…"
-
131
-
132
-
133
-
134
-
135
Action potential of sample points in model 1.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"
-
136
Performance validation on the MIT-BIH database.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"
-
137
Exponentially attenuated sinusoidal function.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"
-
138
Performance comparison with other papers.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"
-
139
Action potential of sample points in model 2.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"
-
140
Action potential of sample points in model 0.
منشور في 2025الموضوعات: "…crayfish optimization algorithm…"