بدائل البحث:
showed algorithm » powered algorithm (توسيع البحث), novel algorithm (توسيع البحث), growth algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
element based » engagement based (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
showed algorithm » powered algorithm (توسيع البحث), novel algorithm (توسيع البحث), growth algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
element based » engagement based (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
1
Convergence curve of the DBO algorithm.
منشور في 2025"…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …"
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Comparison of results based on CycleGAN method.
منشور في 2025"…<div><p>To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. …"
-
10
-
11
-
12
Ablation experiment results table.
منشور في 2025"…To address data collection challenge, this paper proposes a novel feature recognition and detection method for pine wilt disease-infected trees based on an FLMP-YOLOv8 algorithm. The enhanced features include: first, integrating FasterBlock module into the backbone and neck networks of YOLOv8 to, boost the model’s feature extraction capability and reduce complexity, thereby achieving a balance between detection efficiency and accuracy. …"
-
13
-
14
-
15
Comparison of mAP curves in ablation experiments.
منشور في 2025"…To address data collection challenge, this paper proposes a novel feature recognition and detection method for pine wilt disease-infected trees based on an FLMP-YOLOv8 algorithm. The enhanced features include: first, integrating FasterBlock module into the backbone and neck networks of YOLOv8 to, boost the model’s feature extraction capability and reduce complexity, thereby achieving a balance between detection efficiency and accuracy. …"
-
16
-
17
-
18
-
19
-
20