بدائل البحث:
mapping algorithm » making algorithm (توسيع البحث), mining algorithm (توسيع البحث), learning algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
element mapping » elemental mapping (توسيع البحث), element modeling (توسيع البحث), argument mapping (توسيع البحث)
complement cc3d » complement c3 (توسيع البحث), complement c4d (توسيع البحث), complement c5 (توسيع البحث)
cc3d algorithm » cscap algorithm (توسيع البحث), cnn algorithm (توسيع البحث), wold algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
mapping algorithm » making algorithm (توسيع البحث), mining algorithm (توسيع البحث), learning algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
element mapping » elemental mapping (توسيع البحث), element modeling (توسيع البحث), argument mapping (توسيع البحث)
complement cc3d » complement c3 (توسيع البحث), complement c4d (توسيع البحث), complement c5 (توسيع البحث)
cc3d algorithm » cscap algorithm (توسيع البحث), cnn algorithm (توسيع البحث), wold algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
201
-
202
-
203
-
204
-
205
-
206
-
207
-
208
<b>The abundance of ground-level atmospheric ice-nucleating particles and aerosol properties </b><b>in the North Slope of Alaska</b>
منشور في 2024"…It is worth noting that we also flag the data based on wind speed and number concentration, and data mentor edits. The algorithm we use is described in this paper (Sheridan et al., 2016). …"
-
209
-
210
-
211
-
212
-
213
<b>BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification</b>
منشور في 2025"…It provides high-quality, physician-validated pixel-level masks and a balanced multi-class classification split, suitable for benchmarking segmentation and classification algorithms as well as multi-task learning research.…"
-
214
-
215
Ablation study visualization results.
منشور في 2025"…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"
-
216
Experimental parameter configuration.
منشور في 2025"…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"
-
217
FLMP-YOLOv8 identification results.
منشور في 2025"…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"
-
218
C2f structure.
منشور في 2025"…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"
-
219
Experimental environment configuration.
منشور في 2025"…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"
-
220
Ablation experiment results table.
منشور في 2025"…Experimental results on a self-constructed dataset demonstrate the improved model efficacy, achieving 92.0% precision, 80.8% recall, 87.0% mean Average Precision (mAP@0.5), and 81.79 FPS detection speed. Compared to the original YOLOv8 model, the improved algorithm shows increases of 2.2% in precision, 0.6% in recall, and 2.0% in mAP@0.5, with a detection speed improvement of 65.48 FPS. …"