بدائل البحث:
mining algorithm » finding algorithm (توسيع البحث), making algorithm (توسيع البحث), training algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
complement ipca » complement 5a (توسيع البحث), complement c3 (توسيع البحث), complement c5 (توسيع البحث)
element mining » element mapping (توسيع البحث), element bonding (توسيع البحث), element modeling (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
mining algorithm » finding algorithm (توسيع البحث), making algorithm (توسيع البحث), training algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
complement ipca » complement 5a (توسيع البحث), complement c3 (توسيع البحث), complement c5 (توسيع البحث)
element mining » element mapping (توسيع البحث), element bonding (توسيع البحث), element modeling (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
201
Main module structure.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
202
Counting results on MTDC-UAV dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
203
Quantitative results on DRPD dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
204
Architecture of MAR-YOLOv9.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
205
Quantitative results on MTDC-UAV dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
206
Counting results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
207
Example images from four plant datasets.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
208
Counting results on RFRB dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
209
Detection visualization results on WEDU dataset.
منشور في 2024"…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …"
-
210
-
211
Video 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.mp4
منشور في 2025"…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …"
-
212
Data Sheet 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.pdf
منشور في 2025"…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …"
-
213
supporting data for PHD thesis entitled " Arousal Regulation and Neurofeedback Treatment for ADHD Children"
منشور في 2025"…Analyses use standardized mean differences (Hedges g) under random-effects models, stratified by comparator type (medicine, active, sham, passive) and, where applicable, contrasted across protocol families (customised algorithm, SCP, SMR, TBR).</p><p dir="ltr">The supporting dataset contains the <b>raw arm-level descriptive statistics</b> required to compute effect sizes: per study, outcome, and timepoint it lists group means, standard deviations, and sample sizes for neurofeedback and control arms, along with rater, comparator category, protocol type, and outcome direction coding (so higher values consistently reflect the intended construct). …"
-
214
Echo Peak
منشور في 2025"…</p><p dir="ltr">For classification, the algorithm iteratively processes the audio in overlapping time windows. …"
-
215
Identify different types of urban renewal implementations at streetscape scale
منشور في 2025"…Existing research primarily focuses on detecting pixel-level or object-level changes in urban physical space, often neglecting the semantic complexity inherent in urban renewal. …"
-
216
Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma
منشور في 2025"…<p>The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. …"
-
217
AI Influence in the Educational Environment
منشور في 2025"…The CSV file contains Likert-scale and categorical responses, with a separate README describing each variable and coding scheme.</p><p dir="ltr"><b>Potential reuse</b><br>Researchers can replicate or extend technology-acceptance models in emerging-economy contexts, compare student versus professional cohorts, or conduct secondary analyses on AI self-efficacy and algorithmic trust.…"
-
218
<b>R</b><b>esidual</b> <b>GCB-Net</b>: Residual Graph Convolutional Broad Network on Emotion Recognition
منشور في 2025"…It can accurately reflect the emotional changes of the human body by applying graphical-based algorithms or models. EEG signals are nonlinear signals. …"
-
219
ImproBR Replication Package
منشور في 2025"…<br><br>**Import Errors:**<br>Make sure you're in the replication package directory:<br>```bash<br>cd ImproBR-Replication<br>python improbr_pipeline.py --help<br>```<br><br>## Research Results & Evaluation Data<br>### RQ1: Bug Report Improvement Evaluation (139 reports)<br>**Manual Evaluation Results:**<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv</u>) - First evaluator assessments<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv</u>) - Second evaluator assessments <br>- [`RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv</u>) - Consolidated evaluation results<br><br>**Inter-Rater Agreement (Cohen's Kappa):**<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png</u>) - Steps to Reproduce κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png</u>) - Observed Behavior κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png</u>) - Expected Behavior κ scores<br><br>**Algorithm Results:**<br>- [`RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/</u>) - ImproBR improved reports<br>- [`RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/</u>) - ChatBR baseline results<br>- [`RQ1-RQ2/RQ1/algorithm_results/bee_analysis/`](<u>RQ1-RQ2/RQ1/algorithm_results/bee_analysis/</u>) - BEE tool structural analysis<br><br>### RQ2: Comparative Analysis vs ChatBR (37 pairs)<br>**Similarity Score Results:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv</u>) - TF-IDF similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv</u>) - Word2Vec similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json</u>) - Complete TF-IDF comparison with scores for each comparison unit (full debugging)<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json</u>) - Complete Word2Vec comparison with scores for each comparison unit (full debugging)<br><br>**Algorithm Outputs:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/</u>) - ImproBR enhanced reports<br>- [`RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/</u>) - ChatBR baseline outputs<br>- [`RQ1-RQ2/RQ2/dataset/ground_truth/`](<u>RQ1-RQ2/RQ2/dataset/ground_truth/</u>) - High-quality reference reports<br>## Important Notes<br><br>1. …"
-
220
Figure 8 from Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States
منشور في 2024"…Each tumor sample was color-coded by its <i>ERG</i> fusion status inferred by the <i>ERG</i> gene expression level. …"