بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
network algorithm » new algorithm (توسيع البحث)
element learning » excellent learning (توسيع البحث), student learning (توسيع البحث), agent learning (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
element network » alignment network (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
network algorithm » new algorithm (توسيع البحث)
element learning » excellent learning (توسيع البحث), student learning (توسيع البحث), agent learning (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
element network » alignment network (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
Table 6_Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms.xlsx
منشور في 2025"…Three genes such as Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted as top-most candidates between abiotic stress and combined stresses and were identified from a weighted gene co-expression network as the hub genes in the brown module. However, only one gene Zm00001eb038720 encoding RNA-binding protein AU-1/Ribonuclease E/G, predicted by the PLSDA algorithm, was found commonly expressed under both biotic and abiotic stress. …"