بدائل البحث:
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
study algorithm » wsindy algorithm (توسيع البحث), td3 algorithm (توسيع البحث), seu algorithm (توسيع البحث)
complement box » complement low (توسيع البحث), complement _ (توسيع البحث), complement 5a (توسيع البحث)
element study » relevant study (توسيع البحث), present study (توسيع البحث), recent study (توسيع البحث)
box algorithm » best algorithm (توسيع البحث), _ algorithm (توسيع البحث), ii algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
study algorithm » wsindy algorithm (توسيع البحث), td3 algorithm (توسيع البحث), seu algorithm (توسيع البحث)
complement box » complement low (توسيع البحث), complement _ (توسيع البحث), complement 5a (توسيع البحث)
element study » relevant study (توسيع البحث), present study (توسيع البحث), recent study (توسيع البحث)
box algorithm » best algorithm (توسيع البحث), _ algorithm (توسيع البحث), ii algorithm (توسيع البحث)
-
181
-
182
-
183
-
184
-
185
-
186
-
187
-
188
-
189
-
190
-
191
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
192
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
193
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
194
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
195
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
196
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
197
Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption
منشور في 2025"…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
-
198
Table 1_WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.xlsx
منشور في 2025"…We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). …"
-
199
Image 1_WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.tif
منشور في 2025"…We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). …"
-
200
Table 2_WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.docx
منشور في 2025"…We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). …"