يعرض 181 - 200 نتائج من 469 نتيجة بحث عن '(((( element study algorithm ) OR ( complement box algorithm ))) OR ( neural coding algorithm ))', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 181

    Performance comparison with other papers. حسب Hang Zhao (143592)

    منشور في 2025
    الموضوعات:
  2. 182

    Action potential of sample points in model 2. حسب Hang Zhao (143592)

    منشور في 2025
    الموضوعات:
  3. 183

    Kurtograms of different signals. حسب Hang Zhao (143592)

    منشور في 2025
    الموضوعات:
  4. 184

    Model establishment of the human heart. حسب Hang Zhao (143592)

    منشور في 2025
    الموضوعات:
  5. 185

    Action potential of sample points in model 0. حسب Hang Zhao (143592)

    منشور في 2025
    الموضوعات:
  6. 186
  7. 187
  8. 188
  9. 189
  10. 190
  11. 191

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  12. 192

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  13. 193

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  14. 194

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  15. 195

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  16. 196

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  17. 197

    Multimaterial Metamaterial Inverse Design via Machine Learning for Tailorable and Reusable Energy Absorption حسب Xuyang Li (11431426)

    منشور في 2025
    "…Our method integrates multimaterial compatibility (TPU/resin/NiTi/Al alloy) with topology-morphing body-centered cubic (BCC) lattices, where nodal coordinates, beam diameters, and material parameters are co-optimized. We delve into studying the effects of material parameters, nodal coordinates, and beam diameter variations on the structural compressive performances by conducting over 20,000 simulation experiments on randomly generated BCC lattice structures using a finite element analysis. …"
  18. 198

    Table 1_WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.xlsx حسب Yi-Ran Wang (5938265)

    منشور في 2025
    "…We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). …"
  19. 199

    Image 1_WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.tif حسب Yi-Ran Wang (5938265)

    منشور في 2025
    "…We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). …"
  20. 200

    Table 2_WCSGNet: a graph neural network approach using weighted cell-specific networks for cell-type annotation in scRNA-seq.docx حسب Yi-Ran Wang (5938265)

    منشور في 2025
    "…We introduce WCSGNet, a graph neural network-based algorithm for automatic cell-type annotation that leverages Weighted Cell-Specific Networks (WCSNs). …"