Showing 201 - 220 results of 287 for search '(((( elements wt algorithm ) OR ( complement control algorithm ))) OR ( level coding algorithm ))', query time: 0.42s Refine Results
  1. 201
  2. 202

    S1 Graphical abstract - by José M. Rivera-Arbeláez (12418512)

    Published 2025
    “…The software uses a shape-detection algorithm to single out and track the movement of pillars’ tips for the most common shapes of EHT platforms. …”
  3. 203

    Quantitative results on WEDU dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  4. 204

    Counting results on DRPD dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  5. 205

    Quantitative results on RFRB dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  6. 206

    Main module structure. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  7. 207

    Counting results on MTDC-UAV dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  8. 208

    Quantitative results on DRPD dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  9. 209

    Architecture of MAR-YOLOv9. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  10. 210

    Quantitative results on MTDC-UAV dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  11. 211

    Counting results on WEDU dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  12. 212

    Example images from four plant datasets. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  13. 213

    Counting results on RFRB dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  14. 214

    Detection visualization results on WEDU dataset. by Dunlu Lu (19964225)

    Published 2024
    “…In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. …”
  15. 215
  16. 216

    Video 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.mp4 by Matthew Yedutenko (5142461)

    Published 2025
    “…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …”
  17. 217

    Data Sheet 1_TDE-3: an improved prior for optical flow computation in spiking neural networks.pdf by Matthew Yedutenko (5142461)

    Published 2025
    “…Proposed in the literature bioinspired neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors and processors with spiking neural networks to provide real-time and energy-efficient motion detection through extracting temporal correlations between two points in space. However, on the algorithmic level, this design leads to a loss of direction-selectivity of individual TDEs in textured environments. …”
  18. 218

    supporting data for PHD thesis entitled " Arousal Regulation and Neurofeedback Treatment for ADHD Children" by Yuliang Wang (9151616)

    Published 2025
    “…Analyses use standardized mean differences (Hedges g) under random-effects models, stratified by comparator type (medicine, active, sham, passive) and, where applicable, contrasted across protocol families (customised algorithm, SCP, SMR, TBR).</p><p dir="ltr">The supporting dataset contains the <b>raw arm-level descriptive statistics</b> required to compute effect sizes: per study, outcome, and timepoint it lists group means, standard deviations, and sample sizes for neurofeedback and control arms, along with rater, comparator category, protocol type, and outcome direction coding (so higher values consistently reflect the intended construct). …”
  19. 219

    Determining IFI44 as a key lupus nephritis’s biomarker through bioinformatics and immunohistochemistry by Yue Tan (2319811)

    Published 2025
    “…</p> <p>IFI44 shows elevated expression in LN-affected kidneys, compared to healthy controls. The levels of IFI44 positively correlate with serum creatinine and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and inversely with serum complement C3 and initial estimated glomerular filtration rate (eGFR).…”
  20. 220

    Echo Peak by Rocco De Marco (14146593)

    Published 2025
    “…</p><p dir="ltr">For classification, the algorithm iteratively processes the audio in overlapping time windows. …”