بدائل البحث:
content algorithm » consistent algorithm (توسيع البحث), control algorithm (توسيع البحث), monte algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
model algorithm » novel algorithm (توسيع البحث), modbo algorithm (توسيع البحث), modeling algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
content algorithm » consistent algorithm (توسيع البحث), control algorithm (توسيع البحث), monte algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
model algorithm » novel algorithm (توسيع البحث), modbo algorithm (توسيع البحث), modeling algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
1
TreeMap 2016 Stand Size Code Algorithm (Image Service)
منشور في 2024"…<div>TreeMap 2016 provides a tree-level model of the forests of the conterminous United States.…"
-
2
Improved random forest algorithm.
منشور في 2025"…Compared with MDA-RF, the prediction accuracy of the improved RF built on the same subset increased by 1.7%, indicating that improving the bootstrap sampling of random forest by using the K-means++ clustering algorithm can enhance model accuracy to some extent. …"
-
3
-
4
-
5
Pseudocode for the missForestPredict algorithm.
منشور في 2025"…Missing data in input variables often occur at model development and at prediction time. The missForestPredict R package proposes an adaptation of the missForest imputation algorithm that is fast, user-friendly and tailored for prediction settings. …"
-
6
-
7
-
8
-
9
Predictive variables screened by LASSO regression and Random Forest algorithm.
منشور في 2025الموضوعات: -
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
Image 9_Using a random forest model to predict volume growth of larch, birch, and their mixed forests in northern China.jpeg
منشور في 2025"…Using data from the National Forest Inventory (NFI), plot-level measurements, and environmental variables from pure larch (LP), birch (BP), and mixed larch-birch (LB) forests in the mountainous region of northern Hebei, China, this study employed random forest (RF) algorithms to evaluate the relative importance and partial dependence of biotic and abiotic factors on stand volume growth. …"
-
19
Table 1_Using a random forest model to predict volume growth of larch, birch, and their mixed forests in northern China.docx
منشور في 2025"…Using data from the National Forest Inventory (NFI), plot-level measurements, and environmental variables from pure larch (LP), birch (BP), and mixed larch-birch (LB) forests in the mountainous region of northern Hebei, China, this study employed random forest (RF) algorithms to evaluate the relative importance and partial dependence of biotic and abiotic factors on stand volume growth. …"
-
20
Image 10_Using a random forest model to predict volume growth of larch, birch, and their mixed forests in northern China.jpeg
منشور في 2025"…Using data from the National Forest Inventory (NFI), plot-level measurements, and environmental variables from pure larch (LP), birch (BP), and mixed larch-birch (LB) forests in the mountainous region of northern Hebei, China, this study employed random forest (RF) algorithms to evaluate the relative importance and partial dependence of biotic and abiotic factors on stand volume growth. …"