بدائل البحث:
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
from learning » shot learning (توسيع البحث), stem learning (توسيع البحث), perform learning (توسيع البحث)
elements ipca » elements crcy (توسيع البحث), elements ppm (توسيع البحث), elements ices (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
from learning » shot learning (توسيع البحث), stem learning (توسيع البحث), perform learning (توسيع البحث)
elements ipca » elements crcy (توسيع البحث), elements ppm (توسيع البحث), elements ices (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
1
TreeMap 2016 Stand Size Code Algorithm (Image Service)
منشور في 2024"…We used a random forests machine-learning algorithm to impute the forest plot data to a set of target rasters provided by Landscape Fire and Resource Management Planning Tools (LANDFIRE: https://landfire.gov). …"
-
2
On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization
منشور في 2025"…However, we argue that the predominant approach for aligning LLMs with human preferences through a reward model—reinforcement learning from human feedback (RLHF)—suffers from an inherent algorithmic bias due to its Kullback–Leibler-based regularization in optimization. …"
-
3
Supplementary file 1_3D colored point cloud classification of a deep-sea cold-water coral and sponge habitat using geometric features and machine learning algorithms.docx
منشور في 2025"…Three unsupervised (k-means (KM), fuzzy c-means (FCM), and Gaussian mixture model (GMM)) and three supervised (decision tree (DT), random forest (RF), and linear discriminant analysis (LDA)) machine learning (ML) algorithms were compared and assessed for accuracy and reliability. …"
-
4
-
5
Performance of the machine learning algorithms.
منشور في 2025"…Twelve ML algorithms were trained under six class-balancing strategies with hyperparameters tuned via random search. …"
-
6
Performance of the machine learning algorithms.
منشور في 2025"…Twelve ML algorithms were trained under six class-balancing strategies with hyperparameters tuned via random search. …"
-
7
-
8
-
9
-
10
-
11
Code snippet from “Netty/Buffer” Maven artefact.
منشور في 2025"…This paper proposes automating software reuse prediction by leveraging machine learning (ML) algorithms, enabling future research and practitioners to better identify highly reusable software. …"
-
12
-
13
Results obtained from the supervised machine learning regression-based algorithms in the present work.
منشور في 2025"…<p>Results obtained from the supervised machine learning regression-based algorithms in the present work.…"
-
14
Open-source code for the Spatial Optimization Model for Land Use (SSFLA-MLAS)
منشور في 2025"…<p dir="ltr">The open-source content is the source code of a land use spatial optimization model (SSFLA-MLAS) that couples the spatial leapfrog algorithm with multi-level multi-agent systems. …"
-
15
-
16
-
17
-
18
Code snippet from “Apache Dubbo” GitHub project.
منشور في 2025"…This paper proposes automating software reuse prediction by leveraging machine learning (ML) algorithms, enabling future research and practitioners to better identify highly reusable software. …"
-
19
-
20
Results obtained from the supervised classification-based machine learning algorithms to predict deposition quality.
منشور في 2025"…<p>Results obtained from the supervised classification-based machine learning algorithms to predict deposition quality.…"