Showing 81 - 100 results of 49,061 for search '(((( i largest decrease ) OR ( ((via large) OR (a large)) decrease ))) OR ( c also increased ))', query time: 1.27s Refine Results
  1. 81

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  2. 82

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  3. 83

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  4. 84

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  5. 85

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  6. 86
  7. 87
  8. 88
  9. 89

    S1 data_Hazen Main and Blister 2017 absolute diatom counts from Contrasting the ecological effects of decreasing ice cover versus accelerated glacial melt on the High Arctic's largest lake by Neal Michelutti (688828)

    Published 2020
    “…Lake Hazen, the High Arctic's largest lake, has received an approximately 10-fold increase in glacial meltwater since its catchment glaciers shifted from net mass gain to net mass loss in 2007 CE, concurrent with recent warming. …”
  10. 90
  11. 91
  12. 92
  13. 93
  14. 94
  15. 95
  16. 96
  17. 97
  18. 98

    (a) Cement; (b) SHMP; (c) Water glass; (d) PG. by Chenhao Li (822769)

    Published 2025
    “…<div><p>To solve the disposal of large quantities of construction waste clay, this study proposes a new method for preparing controlled low strength materials (CLSM). …”
  19. 99
  20. 100