Search alternatives:
values decrease » values increased (Expand Search), largest decrease (Expand Search)
linear decrease » linear increase (Expand Search)
au_ values » auc values (Expand Search), _ values (Expand Search), all values (Expand Search)
via linear » a linear (Expand Search)
i values » _ values (Expand Search)
values decrease » values increased (Expand Search), largest decrease (Expand Search)
linear decrease » linear increase (Expand Search)
au_ values » auc values (Expand Search), _ values (Expand Search), all values (Expand Search)
via linear » a linear (Expand Search)
i values » _ values (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
Downregulation of <i>TcPiezo1</i> expression decreases Ca<sup>2+</sup> entry in <i>T. cruzi.</i>
Published 2025“…(B) Downregulation of <i>TcPiezo1</i> expression showed a significant decrease of intracellular Ca<sup>2+</sup> (+Tet). …”
-
7
Highly Sensitive and Selective Electrochemical Sensor via Cu-BTC/Au@Cu-BTC Modified Screen-Printed Electrode for the Detection of Chemical Agents
Published 2025“…The response current of Cu-BTC to EMPA and IMPA decreased by 6.75% and 4.86%, and the peak value of Au@Cu-BTC to TDG decreased by 3.3% after 4 weeks, respectively. …”
-
8
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
9
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
10
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
11
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
12
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
13
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
14
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
15
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
16
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
17
-
18
-
19
-
20