بدائل البحث:
experiments each » experiments based (توسيع البحث), experiments _ (توسيع البحث), experiments show (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
each algorithm » search algorithm (توسيع البحث), means algorithm (توسيع البحث)
implement » implemented (توسيع البحث), implementing (توسيع البحث)
level » levels (توسيع البحث)
experiments each » experiments based (توسيع البحث), experiments _ (توسيع البحث), experiments show (توسيع البحث)
using algorithm » using algorithms (توسيع البحث), routing algorithm (توسيع البحث), fusion algorithm (توسيع البحث)
each algorithm » search algorithm (توسيع البحث), means algorithm (توسيع البحث)
implement » implemented (توسيع البحث), implementing (توسيع البحث)
level » levels (توسيع البحث)
-
1
Parameters of each algorithm.
منشور في 2025"…Finally, the multi-strategy snake algorithm optimizes the objective equation, with milling parameter experiments revealing a 55.7 percent increase in surface roughness of Ti64 compared to pre-optimization levels. …"
-
2
Contrast enhancement of digital images using dragonfly algorithm
منشور في 2024"…The article deals with contrast enhancement as an optimization problem and uses the Dragonfly Algorithm (DA) to find the optimal grey-level intensity values. …"
-
3
-
4
-
5
-
6
Reward outcomes for each combination of task cue and policy in the experiment.
منشور في 2025الموضوعات: -
7
-
8
-
9
-
10
-
11
-
12
Comparative results of each algorithm in comparative experiment.
منشور في 2025"…<p>Comparative results of each algorithm in comparative experiment.</p>…"
-
13
-
14
-
15
-
16
Biological Function Assignment across Taxonomic Levels in Mass-Spectrometry-Based Metaproteomics via a Modified Expectation Maximization Algorithm
منشور في 2025"…To overcome this limitation, we implemented an expectation-maximization (EM) algorithm, along with a biological function database, within the MiCId workflow. …"
-
17
-
18
-
19
Significance levels of gene biomarkers.
منشور في 2025"…This algorithm utilizes a graph network to represent the interaction information between genes, builds a GNN model, designs a loss function based on link prediction and self-supervised learning ideas for training, and allows each gene node to obtain a feature vector representing global information. …"
-
20
Computational analysis of each model.
منشور في 2024"…The preprocessing phase involves a local feature attention mechanism that enhances local waveform features using the amplitude envelope. A dual-scale attention mechanism, operating at both channel and neuron levels, is employed to enhance the model’s learning from high-dimensional fused data, improving feature extraction and generalization. …"