بدائل البحث:
mapping algorithm » making algorithm (توسيع البحث), mining algorithm (توسيع البحث), learning algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
cnn algorithm » mean algorithm (توسيع البحث), _ algorithm (توسيع البحث), ii algorithm (توسيع البحث)
implement » implemented (توسيع البحث), implementing (توسيع البحث)
elemental » elements (توسيع البحث), element (توسيع البحث)
mapping algorithm » making algorithm (توسيع البحث), mining algorithm (توسيع البحث), learning algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
cnn algorithm » mean algorithm (توسيع البحث), _ algorithm (توسيع البحث), ii algorithm (توسيع البحث)
implement » implemented (توسيع البحث), implementing (توسيع البحث)
elemental » elements (توسيع البحث), element (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
Codes for "<b>A coherent power-load optimization algorithm for wind-farm-level yaw control considering wake effects via deep neural network</b>"
منشور في 2024"…<p dir="ltr">Codes for "<b>A coherent power-load optimization algorithm for wind-farm-level yaw control considering wake effects via deep neural network</b>"</p>…"
-
9
CNN model evaluation.
منشور في 2025"…The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. …"
-
10
ROC curve CNN.
منشور في 2025"…The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. …"
-
11
-
12
-
13
Confusion matrix evaluation of CNN.
منشور في 2025"…The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. …"
-
14
-
15
-
16
-
17
-
18
CNN structure for feature extraction.
منشور في 2025"…By employing contrast-limited adaptive histogram equalization (CLAHE), contrast-enhanced images were generated with minimal noise and prominent distinctive features. Subsequently, a CNN-SVD-Ensemble model was implemented to extract important features and reduce dimensionality. …"
-
19
-
20