يعرض 1 - 20 نتائج من 248 نتيجة بحث عن '(((( implement cnn algorithm ) OR ( elements during algorithm ))) OR ( neural coding algorithm ))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4

    The genome coding scheme. حسب Wenbing Shi (5806160)

    منشور في 2025
    الموضوعات:
  5. 5
  6. 6
  7. 7
  8. 8

    Codes for "<b>A coherent power-load optimization algorithm for wind-farm-level yaw control considering wake effects via deep neural network</b>" حسب Yize Wang (19535173)

    منشور في 2024
    "…<p dir="ltr">Codes for "<b>A coherent power-load optimization algorithm for wind-farm-level yaw control considering wake effects via deep neural network</b>"</p>…"
  9. 9

    CNN model evaluation. حسب Azhar Imran (17720751)

    منشور في 2025
    "…The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. …"
  10. 10

    ROC curve CNN. حسب Azhar Imran (17720751)

    منشور في 2025
    "…The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. …"
  11. 11

    code_4 حسب Olga Ovtsarenko (20432033)

    منشور في 2024
  12. 12
  13. 13

    Confusion matrix evaluation of CNN. حسب Azhar Imran (17720751)

    منشور في 2025
    "…The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. …"
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    CNN structure for feature extraction. حسب Md. Sabbir Hossain (9958939)

    منشور في 2025
    "…By employing contrast-limited adaptive histogram equalization (CLAHE), contrast-enhanced images were generated with minimal noise and prominent distinctive features. Subsequently, a CNN-SVD-Ensemble model was implemented to extract important features and reduce dimensionality. …"
  19. 19
  20. 20