Search alternatives:
method algorithm » network algorithm (Expand Search), means algorithm (Expand Search), mean algorithm (Expand Search)
coding algorithm » cosine algorithm (Expand Search), modeling algorithm (Expand Search), finding algorithm (Expand Search)
ipca algorithm » wgcna algorithm (Expand Search), cscap algorithm (Expand Search), ii algorithm (Expand Search)
level coding » level according (Expand Search), level modeling (Expand Search), level using (Expand Search)
implement » implemented (Expand Search), implementing (Expand Search)
method algorithm » network algorithm (Expand Search), means algorithm (Expand Search), mean algorithm (Expand Search)
coding algorithm » cosine algorithm (Expand Search), modeling algorithm (Expand Search), finding algorithm (Expand Search)
ipca algorithm » wgcna algorithm (Expand Search), cscap algorithm (Expand Search), ii algorithm (Expand Search)
level coding » level according (Expand Search), level modeling (Expand Search), level using (Expand Search)
implement » implemented (Expand Search), implementing (Expand Search)
-
221
Table 1_In Vitro biomechanical study of meniscal properties in patients with severe knee osteoarthritis.xlsx
Published 2025“…Quantifying the biomechanical properties of the meniscus is essential for understanding its role in knee joint function and pathology.</p>Methods<p>This study aimed to determine the biomechanical properties of the meniscus in patients with severe KOA using experimental mechanical testing and an inverse finite element analysis (iFEA) model. …”
-
222
Table 2_In Vitro biomechanical study of meniscal properties in patients with severe knee osteoarthritis.xlsx
Published 2025“…Quantifying the biomechanical properties of the meniscus is essential for understanding its role in knee joint function and pathology.</p>Methods<p>This study aimed to determine the biomechanical properties of the meniscus in patients with severe KOA using experimental mechanical testing and an inverse finite element analysis (iFEA) model. …”
-
223
TreeMap 2016 Stand Size Code Field (Image Service)
Published 2024“…<div>TreeMap 2016 provides a tree-level model of the forests of the conterminous United States.…”
-
224
Robot polishing experimental platform.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
225
Backpropagation neural network structure.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
226
Polishing experimental data (<i>μ<i>m</i></i>).
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
227
Partial polishing of experimental data.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
228
Traditional curvature step optimization results.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
229
Four factors and three levels of the experiment.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
230
Flowchart of curvature adaptive calculation.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
231
Four factors and three levels of the experiment.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
232
Comparison of surface profiles.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
233
Flowchart of adaptive variable impedance control.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
234
Overall workflow of this study.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
235
Robotic polishing system improves DH parameters.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
236
Flowchart of DBO-BPNN prediction.
Published 2025“…The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters. …”
-
237
Ricker seismic profile.
Published 2025“…We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
-
238
Noise reduction on testing sets from STEAD.
Published 2025“…We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
-
239
SNR comparison of real-field seismic profile.
Published 2025“…We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”
-
240
The 147th single trace.
Published 2025“…We propose a novel seismic random noise suppression method based on enhanced variational mode decomposition (VMD) with grey wolf optimization (GWO) algorithm, which applies the envelope entropy to evaluate the wolf individual fitness, determine the grey wolf hierarchy, and obtain the optimized key elements <i><i>K</i></i> and <i>α</i> in VMD. …”