بدائل البحث:
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
implement » implemented (توسيع البحث), implementing (توسيع البحث)
method algorithm » network algorithm (توسيع البحث), means algorithm (توسيع البحث), mean algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
ipca algorithm » wgcna algorithm (توسيع البحث), cscap algorithm (توسيع البحث), ii algorithm (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
implement » implemented (توسيع البحث), implementing (توسيع البحث)
-
521
Table 9_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…In this study, we employed bioinformatics methods to identify eight TaAkPHY genes in the Aikang58 wheat variety. …"
-
522
Table 4_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…In this study, we employed bioinformatics methods to identify eight TaAkPHY genes in the Aikang58 wheat variety. …"
-
523
Table 11_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…In this study, we employed bioinformatics methods to identify eight TaAkPHY genes in the Aikang58 wheat variety. …"
-
524
Table 6_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).xlsx
منشور في 2025"…In this study, we employed bioinformatics methods to identify eight TaAkPHY genes in the Aikang58 wheat variety. …"
-
525
Image 2_Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat (Triticum aestivum L.).tif
منشور في 2025"…In this study, we employed bioinformatics methods to identify eight TaAkPHY genes in the Aikang58 wheat variety. …"
-
526
Design of stiffened panels for stress and buckling via topology optimization: data
منشور في 2024"…To solve the optimization problem, a semi-analytical sensitivity analysis is performed, and the optimization algorithm is outlined. Numerical investigations demonstrate and validate the proposed method.…"
-
527
Echo Peak
منشور في 2025"…</p><p dir="ltr">For classification, the algorithm iteratively processes the audio in overlapping time windows. …"
-
528
Structure of optimized model parameters in the high-dimensional cases.
منشور في 2025"…The number and size of the clusters were determined with help of the -means clustering method. Both were set to zero if the absolute mean value of the off-diagonal elements in the correlation matrix (cf. …"
-
529
Identify different types of urban renewal implementations at streetscape scale
منشور في 2025"…Existing research primarily focuses on detecting pixel-level or object-level changes in urban physical space, often neglecting the semantic complexity inherent in urban renewal. …"
-
530
Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma
منشور في 2025"…<p>The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. …"
-
531
Supplementary file 1_An interpretable stacking ensemble model for high-entropy alloy mechanical property prediction.docx
منشور في 2025"…Three machine learning algorithms-Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting (Gradient Boosting)-were integrated into a multi-level stacking ensemble, with Support Vector Regression serving as the meta-learner. …"
-
532
Data Sheet 1_Integrated diagnostics and time series sensitivity assessment for growth monitoring of a medicinal plant (Glycyrrhiza uralensis Fisch.) based on unmanned aerial vehicl...
منشور في 2025"…Background<p>Water and nitrogen are essential elements prone to deficiency during plant growth. Current water–fertilizer monitoring technologies are unable to meet the demands of large-scale Glycyrrhiza uralensis cultivation. …"
-
533
Data Sheet 2_Integrated diagnostics and time series sensitivity assessment for growth monitoring of a medicinal plant (Glycyrrhiza uralensis Fisch.) based on unmanned aerial vehicl...
منشور في 2025"…Background<p>Water and nitrogen are essential elements prone to deficiency during plant growth. Current water–fertilizer monitoring technologies are unable to meet the demands of large-scale Glycyrrhiza uralensis cultivation. …"
-
534
AI Influence in the Educational Environment
منشور في 2025"…The CSV file contains Likert-scale and categorical responses, with a separate README describing each variable and coding scheme.</p><p dir="ltr"><b>Potential reuse</b><br>Researchers can replicate or extend technology-acceptance models in emerging-economy contexts, compare student versus professional cohorts, or conduct secondary analyses on AI self-efficacy and algorithmic trust.…"
-
535
Supplementary information files for "Explainable machine learning models for predicting the ultimate bending capacity of slotted perforated cold-formed steel beams under distortion...
منشور في 2025"…Utilizing a dataset from 432 non-linear finite element analysis simulations of CFS Lipped channels, ten ML algorithms, including four basic and six ensemble models, were evaluated. …"
-
536
Confusion_Matrix_Data.zip
منشور في 2025"…<p dir="ltr">This research paper proposes a novel approach for human activity recognition using depth video data, focusing on improving accuracy by effectively capturing motion information and utilizing a robust classification method. Here's a breakdown of the key elements:</p><p dir="ltr"><b>. …"
-
537
Supporting files for thesis "Deep-learning-based Morphological Modelling: Case Study in Soft Robot Control, Shape Sensing and Deformation"
منشور في 2025"…The algorithm of deep deterministic policy gradient (DDPG) along with domain randomization and offline retraining facilitates fast initialization and stable path following, even under varying tip load, demonstrating its advantages over Jacobian model-based and supervised-learning-based control methods. …"
-
538
<b>R</b><b>esidual</b> <b>GCB-Net</b>: Residual Graph Convolutional Broad Network on Emotion Recognition
منشور في 2025"…It can accurately reflect the emotional changes of the human body by applying graphical-based algorithms or models. EEG signals are nonlinear signals. …"
-
539
Gaze Inputs for Targeting: The Eyes Have It, Not With a Cursor
منشور في 2025"…If the participant looked out of the grid boundary, on button press, we chose to select the last targeted element, but no other algorithms to enhance performance were employed. …"
-
540
ImproBR Replication Package
منشور في 2025"…<br><br>**Import Errors:**<br>Make sure you're in the replication package directory:<br>```bash<br>cd ImproBR-Replication<br>python improbr_pipeline.py --help<br>```<br><br>## Research Results & Evaluation Data<br>### RQ1: Bug Report Improvement Evaluation (139 reports)<br>**Manual Evaluation Results:**<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 1 Responses.csv</u>) - First evaluator assessments<br>- [`RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Author 2 Responses.csv</u>) - Second evaluator assessments <br>- [`RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv`](<u>RQ1-RQ2/RQ1/manual_evaluation/Final Results.csv</u>) - Consolidated evaluation results<br><br>**Inter-Rater Agreement (Cohen's Kappa):**<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_s2r_label.png</u>) - Steps to Reproduce κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_ob_label.png</u>) - Observed Behavior κ scores<br>- [`RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png`](<u>RQ1-RQ2/RQ1/cohen's_cappa_coefficient_matrices/confusion_matrix_eb_label.png</u>) - Expected Behavior κ scores<br><br>**Algorithm Results:**<br>- [`RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/improbr_outputs/</u>) - ImproBR improved reports<br>- [`RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/`](<u>RQ1-RQ2/RQ1/algorithm_results/chatbr_outputs/</u>) - ChatBR baseline results<br>- [`RQ1-RQ2/RQ1/algorithm_results/bee_analysis/`](<u>RQ1-RQ2/RQ1/algorithm_results/bee_analysis/</u>) - BEE tool structural analysis<br><br>### RQ2: Comparative Analysis vs ChatBR (37 pairs)<br>**Similarity Score Results:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_tfidf.csv</u>) - TF-IDF similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/overall_word2vec.csv</u>) - Word2Vec similarity scores<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/exact_string_comparisons.json</u>) - Complete TF-IDF comparison with scores for each comparison unit (full debugging)<br>- [`RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json`](<u>RQ1-RQ2/RQ2/algorithm_results/similarity_scores/word2vec_comparisons.json</u>) - Complete Word2Vec comparison with scores for each comparison unit (full debugging)<br><br>**Algorithm Outputs:**<br>- [`RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ImproBR_outputs/</u>) - ImproBR enhanced reports<br>- [`RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/`](<u>RQ1-RQ2/RQ2/algorithm_results/ChatBR_outputs/</u>) - ChatBR baseline outputs<br>- [`RQ1-RQ2/RQ2/dataset/ground_truth/`](<u>RQ1-RQ2/RQ2/dataset/ground_truth/</u>) - High-quality reference reports<br>## Important Notes<br><br>1. …"