بدائل البحث:
implement learning » implicit learning (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
uce algorithm » each algorithm (توسيع البحث), cc3d algorithm (توسيع البحث), ipca algorithm (توسيع البحث)
elements uce » elements ices (توسيع البحث), elements fe (توسيع البحث), elements ree (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
implement learning » implicit learning (توسيع البحث)
learning algorithm » learning algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
uce algorithm » each algorithm (توسيع البحث), cc3d algorithm (توسيع البحث), ipca algorithm (توسيع البحث)
elements uce » elements ices (توسيع البحث), elements fe (توسيع البحث), elements ree (توسيع البحث)
level coding » level according (توسيع البحث), level modeling (توسيع البحث), level using (توسيع البحث)
-
121
-
122
-
123
Image 2_Enhancing COVID-19 classification of X-ray images with hybrid deep transfer learning models.jpg
منشور في 2025"…Our methodology involves three different experiments: manual hyperparameter selection, k-fold retraining based on performance metrics, and the implementation of a genetic algorithm for hyperparameter optimization. …"
-
124
Image 1_Enhancing COVID-19 classification of X-ray images with hybrid deep transfer learning models.jpg
منشور في 2025"…Our methodology involves three different experiments: manual hyperparameter selection, k-fold retraining based on performance metrics, and the implementation of a genetic algorithm for hyperparameter optimization. …"
-
125
On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization
منشور في 2025"…However, we argue that the predominant approach for aligning LLMs with human preferences through a reward model—reinforcement learning from human feedback (RLHF)—suffers from an inherent algorithmic bias due to its Kullback–Leibler-based regularization in optimization. …"
-
126
Code
منشور في 2025"…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
-
127
Sensor value scenario for fuzzy logic algorithm.
منشور في 2025"…The experimental results demonstrated that fuzzy logic has faster calibration rate of 66.23% and helps to save around 61% water in comparison to average logic algorithm. The implementation of a fuzzy logic algorithm significantly optimized water usage compared to traditional manual irrigation methods. …"
-
128
-
129
-
130
-
131
-
132
-
133
The comparison between the state-of-the-arts and the proposed models on the datasets.
منشور في 2025الموضوعات: -
134
-
135
-
136
The comparison between the state-of-the-arts and the proposed models on the datasets.
منشور في 2025الموضوعات: -
137
-
138
-
139
The accuracy and loss curves of the proposed approach in the training process.
منشور في 2025الموضوعات: -
140
The comparison results between the LSTKT models with two different architectures.
منشور في 2025الموضوعات: