بدائل البحث:
latest decrease » largest decrease (توسيع البحث), greatest decrease (توسيع البحث), largest decreases (توسيع البحث)
values decrease » values increased (توسيع البحث), largest decrease (توسيع البحث)
learning data » learning dataset (توسيع البحث), learning a (توسيع البحث)
data decrease » rate decreased (توسيع البحث), a decrease (توسيع البحث), deaths decreased (توسيع البحث)
a latest » a latent (توسيع البحث), _ latest (توسيع البحث), _ latent (توسيع البحث)
latest decrease » largest decrease (توسيع البحث), greatest decrease (توسيع البحث), largest decreases (توسيع البحث)
values decrease » values increased (توسيع البحث), largest decrease (توسيع البحث)
learning data » learning dataset (توسيع البحث), learning a (توسيع البحث)
data decrease » rate decreased (توسيع البحث), a decrease (توسيع البحث), deaths decreased (توسيع البحث)
a latest » a latent (توسيع البحث), _ latest (توسيع البحث), _ latent (توسيع البحث)
-
1
-
2
List of network connections predictive of individual SoF values, together with their β weights, in decreasing order.
منشور في 2025"…<p>List of network connections predictive of individual SoF values, together with their β weights, in decreasing order.…"
-
3
Median SHAP values (calculated for CSCHF at age 5000 days) for binary features in the competing risks RSF model for different disease categories. The features are sorted in decreasing order by absolute value for the cancer outcomes.
منشور في 2025"…The features are sorted in decreasing order by absolute value for the cancer outcomes.…"
-
4
The MAE value of the model under raw data.
منشور في 2025"…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …"
-
5
Three error values under raw data.
منشور في 2025"…Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. …"
-
6
-
7
-
8
Comparison of environmental perception time results at different learning rates.
منشور في 2025الموضوعات: -
9
-
10
-
11
-
12
-
13
RMSE versus learning rate.
منشور في 2025"…Field experiments demonstrate that the predicted values from the LSTM model closely align with the measured values, maintaining short-term shape error prediction accuracy within 3 mm. …"
-
14
-
15
-
16
-
17
-
18
Comprehensive evaluation of machine-learning models in the training cohort.
منشور في 2025الموضوعات: -
19
-
20