بدائل البحث:
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
experiments 1 » experiment 1 (توسيع البحث), experiments _ (توسيع البحث), experiment 2 (توسيع البحث)
1 algorithm » _ algorithm (توسيع البحث), b algorithm (توسيع البحث), _ algorithms (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), modeling algorithm (توسيع البحث), finding algorithm (توسيع البحث)
data algorithm » data algorithms (توسيع البحث), update algorithm (توسيع البحث), atlas algorithm (توسيع البحث)
experiments 1 » experiment 1 (توسيع البحث), experiments _ (توسيع البحث), experiment 2 (توسيع البحث)
1 algorithm » _ algorithm (توسيع البحث), b algorithm (توسيع البحث), _ algorithms (توسيع البحث)
-
1
-
2
Data and code resources.
منشور في 2025"…<div><p>Generalization from past experience is an important feature of intelligent systems. …"
-
3
-
4
-
5
-
6
-
7
-
8
Research data for paper: Efficient Event-based Delay Learning in Spiking Neural Networks
منشور في 2025"…<p dir="ltr">The data in this repository accompanies the paper 'Efficient Event-based Delay Learning in Spiking Neural Networks'</p><p dir="ltr">The data relates to 4 benchmarks:</p><ol><li>Spiking Heidelberg Digits (SHD).…"
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
Pseudo code.
منشور في 2025"…The results showed that the mean squared errors on the training and testing sets were 1.2% and 1.1%, and the average absolute errors were 8.3% and 8.1%, respectively. …"
-
18
-
19
-
20
USDA-ARS Tucson, Arizona 2014-2022 Data Reservoir of Field Experiments with Managed Honey Bee Colonies: Annotated Hive Frame Photos: Dataset I
منشور في 2025"…,</p><p dir="ltr">2020_02_27_RR_Hive_Directions_IMG_2540_VK.PNG</p><p dir="ltr">2020_02_27_RR_Hive_Directions_IMG_2540_VK.xml</p><p dir="ltr">2020_02_27_RR_Hive_Directions_IMG_2540_VK.txt</p><p dir="ltr">Each PNG is annotated for the following categories:</p><p dir="ltr">(1) CappedHoneyCell </p><p dir="ltr">(2) CappedWorkerBroodCell</p><p dir="ltr"> (3) EmptyCombCell</p><p dir="ltr">(4) PollenCell</p><p dir="ltr"> (5) UncappedNectarCell</p><p dir="ltr"> (6) UncappedWorkerLarvaCell</p><p dir="ltr">(7) BeeHiveFrame</p><p dir="ltr">The counts on the number of annotated region of interest (ROI) images are as follows:</p><p dir="ltr">CappedHoneyCell: 19,723</p><p dir="ltr">CappedWorkerBroodCell: 21,456</p><p dir="ltr">EmptyCombCell: 20,655</p><p dir="ltr">PollenCell: 13,406</p><p dir="ltr">UncappedNectarCell: 11,009</p><p dir="ltr">UncappedWorkerLarvaCell: 18,283</p><p dir="ltr">BeeHiveFrame: 1001</p><p dir="ltr">Each such ROI can be extracted into a separate image and used in training machine learning algorithms.…"