Showing 1 - 20 results of 9,002 for search '(((( six n decrease ) OR ( _ large decrease ))) OR ( _ ((values decrease) OR (larger decrease)) ))', query time: 0.51s Refine Results
  1. 1
  2. 2

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…When they stop being introduced in further assembly events (i.e. introduced species do not carry any mutualistic interactions), their proportion slowly decreases with successive invasions. (B) Even though higher proportions of mutualism promote higher richness, introducing this type of interaction into already assembled large communities promotes a sudden drop in richness, while stopping mutualism promotes a slight boost in richness increase. …”
  3. 3

    <b>Supporting data for manuscript</b> "<b>Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins</b>" by Kira Shaw (18796168)

    Published 2025
    “…The locomotion values (traces and metrics) are in arbitrary units with larger integers representing a greater displacement of the spherical treadmill, the hemodynamic (Hbt) values (traces and metrics) are a percentage change from the normalised baseline (prior to stimulus presentation), and the corresponding time series vector is presented in seconds. …”
  4. 4
  5. 5

    ECoG timescales decrease during spatial attention. by Isabel Raposo (21615517)

    Published 2025
    “…Bottom: timescales significantly decrease during covert attention relative to the attend-out condition (two locations: <i>p</i> = 0.0244; four locations: <i>p</i> < 0.0001; mean ± SEM; whiskers indicate maximum and minimum; dots correspond to individual electrodes). …”
  6. 6

    Data from: Colony losses of stingless bees increase in agricultural areas, but decrease in forested areas by Malena Sibaja Leyton (18400983)

    Published 2025
    “…</p><p><br></p><p dir="ltr">#METADATA</p><p dir="ltr">#'data.frame': 472 obs. of 28 variables:</p><p dir="ltr"> #$ ID: Factor variable; a unique identity for the response to the survey</p><p dir="ltr"> #$ Year: Factor variable; six factors available (2016, 2017, 2018, 2019, 2020, 2021) representing the year for the response to the survey</p><p dir="ltr"> #$ N_dead_annual: Numeric variable; representing the number of colonies annually lost</p><p dir="ltr">#$ N_alive_annual: Numeric variable; representing the number of colonies annually alive</p><p dir="ltr"> #$ N_dead_dry: Numeric variable; representing the number of colonies lost during the dry season</p><p dir="ltr">#$ N_alive_dry: Numeric variable; representing the number of colonies alive during the dry season</p><p dir="ltr"> #$ N_dead_rainy: Numeric variable; representing the number of colonies lost during the rainy season</p><p dir="ltr">#$ N_alive_rainy: Numeric variable; representing the number of colonies alive during the rainy season</p><p dir="ltr"> #$ Education: Factor variable; four factors are available ("Self-taught","Learned from another melip","Intro training","Formal tech training"), representing the training level in meliponiculture</p><p dir="ltr"> #$ Operation_Size: Numeric variable; representing the number of colonies managed by the participant (in n)</p><p dir="ltr"> #$ propAgri: Numeric variable; representing the percentage of agricultural area surrounding the meliponary (in %)</p><p dir="ltr"> #$ propForest: Numeric variable; representing the percentage of forested area surrounding the meliponary (in %)</p><p dir="ltr">#$ temp.avg_annual: Numeric variable; representing the average annual temperature (in ºC)</p><p dir="ltr">#$ precip_annual_sum: Numeric variable; representing the total accumulated precipitation (in mm)</p><p dir="ltr">#$ precip_Oct_March_sum: Numeric variable; representing the total accumulated precipitation between October to March (in mm)</p><p dir="ltr">#$ precip_Apri_Sept_sum: Numeric variable; representing the total accumulated precipitation between April to September (in mm)</p><p dir="ltr">#$ temp.avg_Oct_March: Numeric variable; representing the total accumulated precipitation between October to March (in ºC)</p><p dir="ltr">#$ temp.avg_Apri_Sept: Numeric variable; representing the total accumulated precipitation between April to September (in ºC)</p><p dir="ltr"> #$ Importance_dead: Factor variable; three factors are available Normal","High","Very high"), representing the perception of the significance of annual colony losses</p><p dir="ltr"> #$ Climatic_environmental: Binary variable; representing if the participant considered climatic and environmental problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Contamination: Binary variable; representing if the participant considered contamination problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Nutritional: Binary variable; representing if the participant considered nutritional problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Sanitary: Binary variable; representing if the participant considered sanitary problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Queen: Binary variable; representing if the participant considered queen problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Time: Binary variable; representing if the participant considered time problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Economic: Binary variable; representing if the participant considered economic problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Attacks: Binary variable; representing if the participant considered time attacks as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Swarming: Binary variable; representing if the participant considered swarming problems as a potential driver (1) or not (0) of their annual colony losses</p><p><br></p>…”
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Average of % peptides counts for different classes of proteins at different germination time points and significant p-value indicated as compared to soaked sample (*p< 0.05, **p<0.01, ***p<0.001) for garbanzo trypsinised with shades of green showing increase and red showing decrease with respect to soaked. by Indrani Bera (804948)

    Published 2024
    “…<p>Average of % peptides counts for different classes of proteins at different germination time points and significant p-value indicated as compared to soaked sample (*p< 0.05, **p<0.01, ***p<0.001) for garbanzo trypsinised with shades of green showing increase and red showing decrease with respect to soaked.…”
  12. 12

    Average % peptides counts for different classes of proteins at different germination time points and significant p-value indicated as compared to soaked sample (*p< 0.05, **p<0.01, ***p<0.001) for brown non-trypsinised with shades of green showing increase and red showing decrease with respect to soaked. by Indrani Bera (804948)

    Published 2024
    “…<p>Average % peptides counts for different classes of proteins at different germination time points and significant p-value indicated as compared to soaked sample (*p< 0.05, **p<0.01, ***p<0.001) for brown non-trypsinised with shades of green showing increase and red showing decrease with respect to soaked.…”
  13. 13

    Average of % peptides counts for different classes of proteins at different germination time points and significant p-value indicated as compared to soaked sample (*p< 0.05, **p<0.01, ***p<0.001) for garbanzo non-trypsinised with shades of green showing increase and red showing decrease with respect to soaked. by Indrani Bera (804948)

    Published 2024
    “…<p>Average of % peptides counts for different classes of proteins at different germination time points and significant p-value indicated as compared to soaked sample (*p< 0.05, **p<0.01, ***p<0.001) for garbanzo non-trypsinised with shades of green showing increase and red showing decrease with respect to soaked.…”
  14. 14

    Scheme of g-λ model with larger values λ. by Zhanfeng Fan (20390992)

    Published 2024
    “…And if the value of λ assumes larger values, the distortion in the shape of the transmitted wave is associated with the plastic deformation in the uncoupled rock mass. …”
  15. 15

    Mammary fistula (n(%)). by Na Wang (193263)

    Published 2024
    “…<div><p>Objective</p><p>To retrospectively analyze the clinical practicability and value of ultrasound-guided minimally invasive catheterization combined with compound Phellodendron Phellodendri liquid in the treatment of breast abscess during lactation.…”
  16. 16

    Biases in larger populations. by Sander W. Keemink (21253563)

    Published 2025
    “…<p>(<b>A</b>) Maximum absolute bias vs the number of neurons in the population for the Bayesian decoder. Bias decreases with increasing neurons in the population. …”
  17. 17
  18. 18
  19. 19

    (A) Network map of the top ten anti-AD core targets and the top 30 KEGG pathways. The color of the pathway nodes changed from pink to light pink as the DC value decreased. (B) 19 core pathways with DC values (ranked by DC>  average value of (4.933)). by Shakeel Ahmad Khan (13202394)

    Published 2025
    “…The color of the pathway nodes changed from pink to light pink as the DC value decreased. (B) 19 core pathways with DC values (ranked by DC>  average value of (4.933)).…”
  20. 20