Search alternatives:
large decrease » larger decrease (Expand Search), marked decrease (Expand Search), large increases (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
anc decrease » nn decrease (Expand Search), mean decrease (Expand Search), awd decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ anc » _ any (Expand Search), _ auc (Expand Search)
large decrease » larger decrease (Expand Search), marked decrease (Expand Search), large increases (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
anc decrease » nn decrease (Expand Search), mean decrease (Expand Search), awd decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ anc » _ any (Expand Search), _ auc (Expand Search)
-
1
-
2
WBC and ANC on day 7 post-chemotherapy.
Published 2025“…The leukocyte and neutrophil counts of the patients in the bone pain group were significantly higher than those of the patients in the no bone pain group, P(WBC) = 0.001, P(ANC) = 0.002.</p><p>Conclusions</p><p>The preventive use of PEG-rhG-CSF decreases the incidence of neutropenia in patients undergoing concurrent chemoradiotherapy for NPC, thereby reducing rates of chemotherapy delays and radiotherapy interruptions, with mild adverse reactions that are tolerable by patients.…”
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
13
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
14
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
15
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
16
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
17
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
18
-
19
-
20
Continuous Viscoelasticity Measurement of Cell Spheroids via Microfluidic Electrical Aspiration
Published 2024Subjects: