Search alternatives:
cases increased » rate increased (Expand Search), levels increased (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
i larvae » _ larval (Expand Search)
a large » _ large (Expand Search)
8 cases » _ cases (Expand Search), 3 cases (Expand Search), 19 cases (Expand Search)
cases increased » rate increased (Expand Search), levels increased (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
i larvae » _ larval (Expand Search)
a large » _ large (Expand Search)
8 cases » _ cases (Expand Search), 3 cases (Expand Search), 19 cases (Expand Search)
-
21
-
22
-
23
-
24
-
25
Image_8_Comprehensive Characterization of Cachexia-Inducing Factors in Diffuse Large B-Cell Lymphoma Reveals a Molecular Subtype and a Prognosis-Related Signature.TIFF
Published 2021“…Background<p>Cachexia is defined as an involuntary decrease in body weight, which can increase the risk of death in cancer patients and reduce the quality of life. …”
-
26
Deletion of murine <i>Rhoh</i> leads to de-repression of <i>Bcl-6</i> via decreased KAISO levels and accelerates a malignancy phenotype in a murine model of lymphoma
Published 2022“…RHOH was initially identified as a translocation partner with BCL-6 in non-Hodgkin lymphoma (NHL), and aberrant somatic hypermutation (SHM) in the 5ʹ untranslated region of the RHOH gene has also been detected in Diffuse Large B-Cell Lymphoma (DLBCL). …”
-
27
-
28
-
29
-
30
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
31
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
32
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
33
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
34
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
35
High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles
Published 2025“…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
-
36
-
37
-
38
-
39
-
40