Search alternatives:
automatic decrease » dramatic decrease (Expand Search)
aromatic decrease » dramatic decrease (Expand Search)
automatic decrease » dramatic decrease (Expand Search)
aromatic decrease » dramatic decrease (Expand Search)
-
101
-
102
Histogram of the extracted parameters.
Published 2025“…Firstly, the aorta was segmented automatically by TotalSegmentator and its centerline was extracted. …”
-
103
-
104
-
105
-
106
A novel RNN architecture to improve the precision of ship trajectory predictions
Published 2025“…This research proposes a new RNN architecture that decreases the prediction error up to 50% for cargo vessels when compared to the OU model. …”
-
107
-
108
-
109
HG module schematic.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
110
Label data volume and label distribution.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
111
The structure of the context guided block.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
112
SEnet module.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
113
AC-LayeringNetV2 architecture module.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
114
Cracks included in the dataset.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
115
Loss function comparison plot.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
116
Edge device performance benchmarking.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
117
Typical error cases.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
118
Computational efficiency comparison.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
119
Backbone comparison in crack detection.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”
-
120
Statistical analysis table for ablation tests.
Published 2025“…Additionally, the model achieves a 6.55% reduction in size and a 0.03% decrease in computational complexity. These results highlight the practical applicability and efficiency of the proposed approach for automatic crack detection in building structures, emphasizing the novel integration of feature fusion and attention mechanisms to address challenges in real-time and high-accuracy detection of micro-cracks in complex environments.…”