Iradokizunak:
classifications » classification (Hedatu)
justification » purification (Hedatu), certification (Hedatu)
modifications » modification (Hedatu)
notification » notifications (Hedatu), modification (Hedatu), certification (Hedatu)
classifications » classification (Hedatu)
justification » purification (Hedatu), certification (Hedatu)
modifications » modification (Hedatu)
notification » notifications (Hedatu), modification (Hedatu), certification (Hedatu)
-
121
Features used for diagnosis classification.
Argitaratua 2025“...All cells left white did not contribute to classification. The characteristic features for the neurotypical control group can be obtained by simply multiplying the feature values shown here by −1....”
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
Dendrogram classification of environmental variables.
Argitaratua 2025“...<p>Dendrogram classification of environmental variables.</p>...”
-
131
Classification of attributes in the studies examined.
Argitaratua 2025“...<p>Classification of attributes in the studies examined.</p>...”
-
132
-
133
-
134
Classification performance model comparison.
Argitaratua 2025“...<p>Performance of the five classification models on training set (black lines) and test set (colored bars) evaluated on A) F1 scores and B) ROC-AUC scores....”
-
135
-
136
LLM argument classification results
Argitaratua 2025“...<p dir="ltr">The datasets contain the results of prompting various LLM's with the goal of argument classification. For details see https://arxiv.org/abs/2507.08621</p>...”
-
137
-
138
Classification of bearing data labels.
Argitaratua 2025“...To address this issue, this paper proposes an improved parallel one-dimensional convolutional neural network model, which integrates a parallel dual-channel convolutional kernel, a gated recurrent unit, and an attention mechanism. The classification is performed using a global max-pooling layer followed by a Softmax layer. ...”
-
139
-
140