-
81
-
82
-
83
-
84
The solutions generated by the software for verification experiment.
Vydáno 2025“…<p>The solutions generated by the software for verification experiment.</p>…”
-
85
Experimental verification software interface diagram.
Vydáno 2025“…<p>Experimental verification software interface diagram.</p>…”
-
86
-
87
-
88
-
89
-
90
Graph representation of all possible , where <i>A</i><sup> + </sup> is constrained to be an optimal solution for the example in Fig 1.
Vydáno 2025Témata: “…solid mathematical justification…”
-
91
An instance of the IPP that can be solved by applying the algorithms for the DPP.
Vydáno 2025Témata: “…solid mathematical justification…”
-
92
A depiction of the labeled gaps constructed by the bottom-up phase on the input shown in Fig 1.
Vydáno 2025Témata: “…solid mathematical justification…”
-
93
Depiction of how the label of is assigned as a function of whether are identical (row =), nested (rows ), or partially overlapping (row “else”), and as a function of the labels of...
Vydáno 2025Témata: “…solid mathematical justification…”
-
94
A sequence of intermediate solutions produced by the top-down phase on the input of Fig 1, leading to an optimal solution (step 5).
Vydáno 2025Témata: “…solid mathematical justification…”
-
95
-
96
Example input of the DPP: a phylogenetic tree T and an alignment A for L(T).
Vydáno 2025Témata: “…solid mathematical justification…”
-
97
-
98
-
99
(Right:) A candidate solution <i>A</i><sup> + </sup> for the example in Fig 1.
Vydáno 2025Témata: “…solid mathematical justification…”
-
100
Experiment on the two OrthoMaM amino acid alignments datasets. For each dataset, we show the total number of sites with gaps (across 15,868 alignments), and the percentages of thes...
Vydáno 2025Témata: “…solid mathematical justification…”