Search alternatives:
python model » action model (Expand Search), motion model (Expand Search)
Showing 141 - 160 results of 190 for search '((((python model) OR (python tool))) OR (python code)) represents', query time: 0.21s Refine Results
  1. 141

    Audio Datasets of belt conveyor rollers in mines by Juan Liu (19687435)

    Published 2024
    “…</li><li><b>Python Code: </b>This code validates the accuracy and usability of the audio feature datasets in real-time monitoring of belt conveyor roller operational states.…”
  2. 142
  3. 143

    Attention and Cognitive Workload by Rui Varandas (11900993)

    Published 2025
    “…</p><p dir="ltr">The data for subject 2 do not include the 2nd part of the acquisition (python task) because the equipment stopped acquiring; subject 3 has the 1st (N-Back task and mental subtraction) and the 2nd part (python tutorial) together in the <code>First part</code> folder (file <code>D1_S3_PB_description.json</code> indicates the start and end of each task); subject 4 only has the mental subtraction task in the 1st part acquisition and in subject 8, the subtraction task data is included in the 2nd part acquisition, along with python task.…”
  4. 144

    Bacterial persistence modulates the speed, magnitude and onset of antibiotic resistance evolution by Giorgio Boccarella (22810952)

    Published 2025
    “…</p><p dir="ltr">Repository structure</p><p dir="ltr">Fig_1/</p><ul><li>Probability of emergence analysis</li><li>Fig_1.py: contour plot generation</li></ul><p dir="ltr">Fig_2/</p><ul><li>MIC evolution simulations</li><li>Fig_2_a/: R-based simulation analysis</li><li>Fig_2_b/: Python visualization</li><li>Fig_2_c/: speed of resistance evolution analysis</li><li>Fig_2_d/: time to resistance analysis</li></ul><p dir="ltr">Fig_3/</p><ul><li>Distribution analysis</li><li>Fig_3_a-b.R: density plots and bar charts (empirical and simulated)</li></ul><p dir="ltr">Fig_4/</p><ul><li>Mutation analysis</li><li>Fig_4_a-b/: mutation counting analysis</li><li><ul><li>Fig_4_a/: simulation data (sim)</li><li>Fig_4_b/: empirical data (emp)</li></ul></li><li>Fig_4_c/: gene ontology and functional analysis</li></ul><p dir="ltr">Fig_5/</p><ul><li>Large-scale evolutionary simulations</li><li>Fig_5_a-b/: heatmap visualizations</li><li>Fig_5_c/: MIC and extinction analysis (empirical)</li></ul><p dir="ltr">Fig_6/</p><ul><li>Population size effects</li><li>Fig_6.py: population size analysis simulations</li></ul><p dir="ltr">S1_figure/</p><ul><li>Supplementary experimental data</li></ul><p dir="ltr">S2_figure/</p><ul><li>Supplementary frequency analysis</li></ul><p dir="ltr">S3_figure/</p><ul><li>Supplementary probability analysis</li></ul><p dir="ltr">scripts_simulations_cluster/</p><ul><li>Large-scale, cluster-optimized simulations</li></ul><p dir="ltr">complete_data/</p><ul><li>Reference to the full data sheet (full data set deposited elsewhere)</li></ul><p dir="ltr">Script types and languages</p><p dir="ltr">Python scripts (.py)</p><ul><li>Mathematical modeling: survival functions, probability calculations</li><li>Stochastic simulations: tau-leaping population dynamics</li><li>Data processing: mutation analysis, frequency calculations</li><li>Visualization: plotting with matplotlib and seaborn</li><li>Typical dependencies: numpy, pandas, matplotlib, seaborn, scipy</li></ul><p dir="ltr">R scripts (.R)</p><ul><li>Statistical analysis: distribution fitting, density plots</li><li>Advanced visualization: publication-quality figures (ggplot2)</li><li>Data manipulation: dplyr / tidyr workflows</li><li>Typical dependencies: dplyr, tidyr, ggplot2, readxl, cowplot</li></ul><p dir="ltr">Data requirements</p><p dir="ltr">The scripts are designed to run using the complete_data.xlsx file and, where relevant, the raw simulation outputs and empirical data sets as described above. …”
  5. 145

    End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting by Jamie Hathaway (10285367)

    Published 2025
    “…</p><h3>policy/</h3><p dir="ltr">This folder contains pickled trajectories, in the form of a Python list.</p><p dir="ltr">The list's elements are TrajWithRew dataclass objects from the Imitation Python library (https://imitation.readthedocs.io/en/latest/)</p><p dir="ltr">TrajWithRew contains 4 main fields</p><ul><li> obs - the (unnormalised) observations, in the form of a [WINDOW_LENGTH * NUM_CHANNELS] array</li><li> acts - the actions in the form of a [WINDOW_LENGTH - 1 * NUM_ACTS] array</li><li> infos - the info values at each timestep, as a [WINDOW_LENGTH - 1] array of dicts</li><li> terminals - boolean indicating if that trajectory segment is a terminal segment</li><li> rews - the rewards as a [WINDOW_LENGTH - 1] array</li></ul><p dir="ltr">Each TrajWithRew represents not a full episodic trajectory, as is usually the case with Imitiation - rather they represent segments of a full episodic trajectory, of length WINDOW_LENGTH. …”
  6. 146

    Satellite monitoring of Greenland wintertime buried lake drainage by Jianing Wei (22400896)

    Published 2025
    “…Buried_lake_drainage_code</p><p dir="ltr">This folder contains two Python Jupyter Notebooks for detecting wintertime buried lake drainages (BLDs). …”
  7. 147

    2024 HUD Point in Time Count Data by State and CoC with Serious Mental Illness and Chronic Substance Use Counts by Benjamin Gorman (21648794)

    Published 2025
    “…</p><p dir="ltr">HUD PIT Count reports for states, Washington, DC, and the 384 CoCs were systematically downloaded from the HUD Exchange website using a Python script developed using Cursor software. Cursor uses large language models, especially Claude Sonnet 4 (Anthropic), to generate code. …”
  8. 148

    Digital Twin for Chemical Sciences by Jin Qian (19339035)

    Published 2025
    “…The procedure for generating data in Figure 3 can be found in the demo notebook in Supplementary Code. The procedure for generating data of Figure 4 has been uploaded in fig4_figshare.zip file. …”
  9. 149

    Sonification of Warming Stripes by Christopher Harrison (9448751)

    Published 2025
    “…The sonification was produced using the STRAUSS sonification Python package.</p><p dir="ltr">Here we release:<br>1. …”
  10. 150

    (A) Sampling locations and ranges of <i>I. feisthamelii</i> (purple) and <i>I. podalirius</i> (teal) butterflies. by Sam Ebdon (21072525)

    Published 2025
    “…(B) Sampling locations of butterflies from the <i>Iphiclides</i> HZ. The dashed line represents the approximate HZ center, based on samples collected by Lafranchis et al. …”
  11. 151

    Sonification of Growing Black Hole by Rose Shepherd (20328444)

    Published 2024
    “…We used the open source Python package STRAUSS to produce the sonification (Trayford and Harrison 2023). …”
  12. 152

    Cognitive Fatigue by Rui Varandas (11900993)

    Published 2025
    “…<br></p><p dir="ltr"><b>HCI features</b> encompass keyboard, mouse, and screenshot data. Below is a Python code snippet for extracting screenshot files from the screenshots CSV file.…”
  13. 153

    Physiotherapist-Assisted Wrist Movement Protocol for EEG-Based Corticokinematic Coherence Assessment by Fanni Kovács (21733838)

    Published 2025
    “…</li></ol><h4><b>Movement File Structure</b></h4><p dir="ltr">Each entry contains:</p><ul><li><code><strong>time</strong></code>: a 32-bit unsigned integer indicating the timestamp in milliseconds,</li><li><code><strong>x</strong></code>, <code><strong>y</strong></code>, <code><strong>z</strong></code>: 16-bit signed integers representing acceleration along the respective axes,</li><li><code><strong>trigger</strong></code>: an 8-bit unsigned integer used to mark event-related triggers for synchronization with the EEG data (e.g., movement onset).…”
  14. 154

    Minami_etal_2025 by Keiichi Mochida (4670800)

    Published 2025
    “…<h2>Code files related to Minami et al (2025)</h2><p dir="ltr">accession_plot.py:Python script used to generate Fig4a.…”
  15. 155

    Genomic Epidemiology of SARS-CoV-2 in Peru from 2020 to 2024 by Pablo Tsukayama (22614461)

    Published 2025
    “…</p><p dir="ltr"><b>Contents:</b></p><p><b>1. Analysis Code</b></p><p>Core Python scripts used to curate metadata, process genomic data, perform lineage assignments, compute summary statistics, and prepare inputs for downstream phylogenetic and phylogeographic analyses. …”
  16. 156

    Building footprtints from 1970s Hexagon spy satellite images for four global urban growth hotspots by Franz Schug (10165159)

    Published 2025
    “…The data represent the final results, that means, after merging models with different chip sizes and post-processing (see manuscript). …”
  17. 157

    Data Sheet 1_Nationwide epidemiological study of subarachnoid hemorrhage: trends in admissions, mortality, seasonality, costs, clipping, embolization, and the impact of COVID-19.pd... by Thiago Oscar Goulart (22485604)

    Published 2025
    “…</p>Methods<p>This retrospective study analyzed secondary data from the Brazilian public health system (DataSUS) using ICD-10 code I60 for aSAH. Key metrics included the evaluation of admissions with time-series in Python, and mortality rates, procedures, and costs.…”
  18. 158

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Analysis of the confusion matrix revealed a critical limitation: although the model correctly identified 785 poisonous mushrooms, it misclassified 313 as edible (false negatives), which represents an unacceptable risk in a practical application.…”
  19. 159

    <b>IEEE 14 bus test systems row data </b> by meysam shahriyari (22599314)

    Published 2025
    “…Each row in the dataset represents one simulated case, and each column corresponds to an input feature used in the deep learning model.…”
  20. 160

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …”