Showing 1 - 20 results of 17,884 for search '(( ((_ large) OR (via large)) decrease ) OR ((( _ largest decrease ) OR ( b large degree ))))', query time: 0.37s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Supplementary data: In vitro amplification of whole large plasmids via transposon-mediated oriC insertion by Masayuki Su'estugu (11359558)

    Published 2021
    “…It should be noted that the ratio of supercoiled form decreased in “no cut” sample due to DNA damage during the incubation. …”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  14. 14

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  15. 15

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  16. 16

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  17. 17

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  18. 18

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  19. 19
  20. 20